Колебательный контур. Резонанс в последовательном и параллельном LC контуре

Темы кодификатора ЕГЭ : свободные электромагнитные колебания, колебательный контур, вынужденные электромагнитные колебания, резонанс, гармонические электромагнитные колебания.

Электромагнитные колебания - это периодические изменения заряда, силы тока и напряжения, происходящие в электрической цепи. Простейшей системой для наблюдения электромагнитных колебаний служит колебательный контур.

Колебательный контур

Колебательный контур - это замкнутый контур, образованный последовательно соединёнными конденсатором и катушкой.

Зарядим конденсатор, подключим к нему катушку и замкнём цепь. Начнут происходить свободные электромагнитные колебания - периодические изменения заряда на конденсаторе и тока в катушке. Свободными, напомним, эти колебания называются потому, что они совершаются без какого-либо внешнего воздействия - только за счёт энергии, запасённой в контуре.

Период колебаний в контуре обозначим, как всегда, через . Сопротивление катушки будем считать равным нулю.

Рассмотрим подробно все важные стадии процесса колебаний. Для большей наглядности будем проводить аналогию с колебаниями горизонтального пружинного маятника.

Начальный момент : . Заряд конденсатора равен , ток через катушку отсутствует (рис. 1 ). Конденсатор сейчас начнёт разряжаться.

Рис. 1.

Несмотря на то, что сопротивление катушки равно нулю, ток не возрастёт мгновенно. Как только ток начнёт увеличиваться, в катушке возникнет ЭДС самоиндукции, препятствующая возрастанию тока.

Аналогия . Маятник оттянут вправо на величину и в начальный момент отпущен. Начальная скорость маятника равна нулю.

Первая четверть периода : . Конденсатор разряжается, его заряд в данный момент равен . Ток через катушку нарастает (рис. 2 ).

Рис. 2.

Увеличение тока происходит постепенно: вихревое электрическое поле катушки препятствует нарастанию тока и направлено против тока.

Аналогия . Маятник движется влево к положению равновесия; скорость маятника постепенно увеличивается. Деформация пружины (она же - координата маятника) уменьшается.

Конец первой четверти : . Конденсатор полностью разрядился. Сила тока достигла максимального значения (рис. 3 ). Сейчас начнётся перезарядка конденсатора.

Рис. 3.

Напряжение на катушке равно нулю, но ток не исчезнет мгновенно. Как только ток начнёт уменьшаться, в катушке возникнет ЭДС самоиндукции, препятствующая убыванию тока.

Аналогия . Маятник проходит положение равновесия. Его скорость достигает максимального значения . Деформация пружины равна нулю.

Вторая четверть : . Конденсатор перезаряжается - на его обкладках появляется заряд противоположного знака по сравнению с тем, что был вначале (рис. 4 ).

Рис. 4.

Сила тока убывает постепенно: вихревое электрическое поле катушки, поддерживая убывающий ток, сонаправлено с током.

Аналогия . Маятник продолжает двигаться влево - от положения равновесия к правой крайней точке. Скорость его постепенно убывает, деформация пружины увеличивается.

Конец второй четверти . Конденсатор полностью перезарядился, его заряд опять равен (но полярность другая). Сила тока равна нулю (рис. 5 ). Сейчас начнётся обратная перезарядка конденсатора.

Рис. 5.

Аналогия . Маятник достиг крайней правой точки. Скорость маятника равна нулю. Деформация пружины максимальна и равна .

Третья четверть : . Началась вторая половина периода колебаний; процессы пошли в обратном направлении. Конденсатор разряжается (рис. 6 ).

Рис. 6.

Аналогия . Маятник двигается обратно: от правой крайней точки к положению равновесия.

Конец третьей четверти : . Конденсатор полностью разрядился. Ток максимален и снова равен , но на сей раз имеет другое направление (рис. 7 ).

Рис. 7.

Аналогия . Маятник снова проходит положение равновесия с максимальной скоростью , но на сей раз в обратном направлении.

Четвёртая четверть : . Ток убывает, конденсатор заряжается (рис. 8 ).

Рис. 8.

Аналогия . Маятник продолжает двигаться вправо - от положения равновесия к крайней левой точке.

Конец четвёртой четверти и всего периода : . Обратная перезарядка конденсатора завершена, ток равен нулю (рис. 9 ).

Рис. 9.

Данный момент идентичен моменту , а данный рисунок - рисунку 1 . Совершилось одно полное колебание. Сейчас начнётся следующее колебание, в течение которого процессы будут происходить точно так же, как описано выше.

Аналогия . Маятник вернулся в исходное положение.

Рассмотренные электромагнитные колебания являются незатухающими - они будут продолжаться бесконечно долго. Ведь мы предположили, что сопротивление катушки равно нулю!

Точно так же будут незатухающими колебания пружинного маятника при отсутствии трения.

В реальности катушка обладает некоторым сопротивлением. Поэтому колебания в реальном колебательном контуре будут затухающими. Так, спустя одно полное колебание заряд на конденсаторе окажется меньше исходного значения. Со временем колебания и вовсе исчезнут: вся энергия, запасённая изначально в контуре, выделится в виде тепла на сопротивлении катушки и соединительных проводов.

Точно так же будут затухающими колебания реального пружинного маятника: вся энергия маятника постепенно превратится в тепло из-за неизбежного наличия трения.

Энергетические превращения в колебательном контуре

Продолжаем рассматривать незатухающие колебания в контуре, считая сопротивление катушки нулевым. Конденсатор имеет ёмкость , индуктивность катушки равна .

Поскольку тепловых потерь нет, энергия из контура не уходит: она постоянно перераспределяется между конденсатором и катушкой.

Возьмём момент времени, когда заряд конденсатора максимален и равен , а ток отсутствует. Энергия магнитного поля катушки в этот момент равна нулю. Вся энергия контура сосредоточена в конденсаторе:

Теперь, наоборот, рассмотрим момент, когда ток максимален и равен , а конденсатор разряжен. Энергия конденсатора равна нулю. Вся энергия контура запасена в катушке:

В произвольный момент времени, когда заряд конденсатора равен и через катушку течёт ток , энергия контура равна:

Таким образом,

(1)

Соотношение (1) применяется при решении многих задач.

Электромеханические аналогии

В предыдущем листке про самоиндукцию мы отметили аналогию между индуктивностью и массой. Теперь мы можем установить ещё несколько соответствий между электродинамическими и механическими величинами.

Для пружинного маятника мы имеем соотношение, аналогичное (1) :

(2)

Здесь, как вы уже поняли, - жёсткость пружины, - масса маятника, и - текущие значения координаты и скорости маятника, и - их наибольшие значения.

Сопоставляя друг с другом равенства (1) и (2) , мы видим следующие соответствия:

(3)

(4)

(5)

(6)

Опираясь на эти электромеханические аналогии, мы можем предвидеть формулу для периода электромагнитных колебаний в колебательном контуре.

В самом деле, период колебаний пружинного маятника, как мы знаем, равен:

B соответствии с аналогиями (5) и (6) заменяем здесь массу на индуктивность , а жёсткость на обратную ёмкость . Получим:

(7)

Электромеханические аналогии не подводят: формула (7) даёт верное выражение для периода колебаний в колебательном контуре. Она называется формулой Томсона . Мы вскоре приведём её более строгий вывод.

Гармонический закон колебаний в контуре

Напомним, что колебания называются гармоническими , если колеблющаяся величина меняется со временем по закону синуса или косинуса. Если вы успели забыть эти вещи, обязательно повторите листок «Механические колебания».

Колебания заряда на конденсаторе и силы тока в контуре оказываются гармоническими. Мы сейчас это докажем. Но прежде нам надо установить правила выбора знака для заряда конденсатора и для силы тока - ведь при колебаниях эти величины будут принимать как положительные, так и отрицательные значения.

Сначала мы выбираем положительное направление обхода контура. Выбор роли не играет; пусть это будет направление против часовой стрелки (рис. 10 ).

Рис. 10. Положительное направление обхода

Сила тока считается положительной class="tex" alt="(I > 0)"> , если ток течёт в положительном направлении. В противном случае сила тока будет отрицательной .

Заряд конденсатора - это заряд той его пластины, на которую течёт положительный ток (т. е. той пластины, на которую указывает стрелка направления обхода). В данном случае - заряд левой пластины конденсатора.

При таком выборе знаков тока и заряда справедливо соотношение: (при ином выборе знаков могло случиться ). Действительно, знаки обеих частей совпадают: если class="tex" alt="I > 0"> , то заряд левой пластины возрастает, и потому class="tex" alt="\dot{q} > 0"> .

Величины и меняются со временем, но энергия контура остаётся неизменной:

(8)

Стало быть, производная энергии по времени обращается в нуль: . Берём производную по времени от обеих частей соотношения (8) ; не забываем, что слева дифференцируются сложные функции (Если - функция от , то по правилу дифференцирования сложной функции производная от квадрата нашей функции будет равна: ):

Подставляя сюда и , получим:

Но сила тока не является функцией, тождественно равной нулю; поэтому

Перепишем это в виде:

(9)

Мы получили дифференциальное уравнение гармонических колебаний вида , где . Это доказывает, что заряд конденсатора колеблется по гармоническому закону (т.е. по закону синуса или косинуса). Циклическая частота этих колебаний равна:

(10)

Эта величина называется ещё собственной частотой контура; именно с этой частотой в контуре совершаются свободные (или, как ещё говорят, собственные колебания). Период колебаний равен:

Мы снова пришли к формуле Томсона.

Гармоническая зависимость заряда от времени в общем случае имеет вид:

(11)

Циклическая частота находится по формуле (10) ; амплитуда и начальная фаза определяются из начальных условий.

Мы рассмотрим ситуацию, подробно изученную в начале этого листка. Пусть при заряд конденсатора максимален и равен (как на рис. 1 ); ток в контуре отсутствует. Тогда начальная фаза , так что заряд меняется по закону косинуса с амплитудой :

(12)

Найдём закон изменения силы тока. Для этого дифференцируем по времени соотношение (12) , опять-таки не забывая о правиле нахождения производной сложной функции:

Мы видим, что и сила тока меняется по гармоническому закону, на сей раз - по закону синуса:

(13)

Амплитуда силы тока равна:

Наличие «минуса» в законе изменения тока (13) понять не сложно. Возьмём, к примеру, интервал времени (рис. 2 ).

Ток течёт в отрицательном направлении: . Поскольку , фаза колебаний находится в первой четверти: . Синус в первой четверти положителен; стало быть, синус в (13) будет положительным на рассматриваемом интервале времени. Поэтому для обеспечения отрицательности тока действительно необходим знак «минус» в формуле (13) .

А теперь посмотрите на рис. 8 . Ток течёт в положительном направлении. Как же работает наш «минус» в этом случае? Разберитесь-ка, в чём тут дело!

Изобразим графики колебаний заряда и тока, т.е. графики функций (12) и (13) . Для наглядности представим эти графики в одних координатных осях (рис. 11 ).

Рис. 11. Графики колебаний заряда и тока

Обратите внимание: нули заряда приходятся на максимумы или минимумы тока; и наоборот, нули тока соответствуют максимумам или минимумам заряда.

Используя формулу приведения

запишем закон изменения тока (13) в виде:

Сопоставляя это выражение с законом изменения заряда , мы видим, что фаза тока, равная , больше фазы заряда на величину . В таком случае говорят, что ток опережает по фазе заряд на ; или сдвиг фаз между током и зарядом равен ; или разность фаз между током и зарядом равна .

Опережение током заряда по фазе на графически проявляется в том, что график тока сдвинут влево на относительно графика заряда. Сила тока достигает, например, своего максимума на четверть периода раньше, чем достигает максимума заряд (а четверть периода как раз и соответствует разности фаз ).

Вынужденные электромагнитные колебания

Как вы помните, вынужденные колебания возникают в системе под действием периодической вынуждающей силы. Частота вынужденных колебаний совпадает с частотой вынуждающей силы.

Вынужденные электромагнитные колебания будут совершаться в контуре, поключённом к источнику синусоидального напряжения (рис. 12 ).

Рис. 12. Вынужденные колебания

Если напряжение источника меняется по закону:

то в контуре происходят колебания заряда и тока с циклической частотой (и с периодом, соответственно, ). Источник переменного напряжения как бы «навязывает» контуру свою частоту колебаний, заставляя забыть о собственной частоте .

Амплитуда вынужденных колебаний заряда и тока зависит от частоты : амплитуда тем больше,чем ближе к собственной частоте контура .При наступает резонанс - резкое возрастание амплитуды колебаний. Мы поговорим о резонансе более подробно в следующем листке, посвящённом переменному току.

Электромагнитное поле может существовать и в отсутствие электрических зарядов или токов: именно такие «самоподдерживающиеся» электрическое и магнитное поля представляют собой электромагнитные волны, к которым относятся видимый свет, инфракрасное, ультрафиолетовое и рентгеновское излучения, радиоволны и т. д.

§ 25. Колебательный контур

Простейшая система, в которой возможны собственные электромагнитные колебания, - это так называемый колебательный контур, состоящий из соединенных между собой конденсатора и катушки индуктивности (рис. 157). Как и у механического осциллятора, например массивного тела на упругой пружине, собственные колебания в контуре сопровождаются энергетическими превращениями.

Рис. 157. Колебательный контур

Аналогия между механическими и электромагнитными колебаниями. Для колебательного контура аналог потенциальной энергии механического осциллятора (например, упругой энергии деформированной пружины) - это энергия электрического поля в конденсаторе. Аналог кинетической энергии движущегося тела - энергия магнитного поля в катушке индуктивности. В самом деле, энергия пружины пропорциональна квадрату смещения из положения равновесия а энергия конденсатора пропорциональна квадрату заряда Кинетическая энергия тела пропорциональна квадрату его скорости а энергия магнитного поля в катушке пропорциональна квадрату силы тока

Полная механическая энергия пружинного осциллятора Е равна сумме потенциальной и кинетической энергий:

Энергия колебаний. Аналогично, полная электромагнитная энергия колебательного контура равна сумме энергий электрического поля в конденсаторе и магнитного поля в катушке:

Из сопоставления формул (1) и (2) следует, что аналогом жесткости к пружинного осциллятора в колебательном контуре служит величина обратная емкости конденсатора С, а аналогом массы - индуктивность катушки

Напомним, что в механической системе, энергия которой дается выражением (1), могут происходить собственные незатухающие гармонические колебания. Квадрат частоты таких колебаний равен отношению коэффициентов при квадратах смещения и скорости в выражении для энергии:

Собственная частота. В колебательном контуре, электромагнитная энергия которого дается выражением (2), могут происходить собственные незатухающие гармонические колебания, квадрат частоты которых тоже, очевидно, равен отношению соответствующих коэффициентов (т. е. коэффициентов при квадратах заряда и силы тока):

Из (4) следует выражение для периода колебаний, называемое формулой Томсона:

При механических колебаниях зависимость смещения х от времени определяется косинусоидальной функцией, аргумент которой называется фазой колебаний:

Амплитуда и начальная фаза. Амплитуда А и начальная фаза а определяются начальными условиями, т. е. значениями смещения и скорости при

Аналогично, при электромагнитных собственных колебаниях в контуре заряд конденсатора зависит от времени по закону

где частота определяется, в соответствии с (4), только свойствами самого контура, а амплитуда колебаний заряда и начальная фаза а, как и у механического осциллятора, определяется

начальными условиями, т. е. значениями заряда конденсатора и силы тока при Таким образом, собственная частота не зависит от способа возбуждения колебаний, в то время как амплитуда и начальная фаза определяются именно условиями возбуждения.

Энергетические превращения. Рассмотрим подробнее энергетические превращения при механических и электромагнитных колебаниях. На рис. 158 схематически изображены состояния механического и электромагнитного осцилляторов через промежутки времени в четверть периода

Рис. 158. Энергетические превращения при механических и электромагнитных колебаниях

Дважды за период колебаний энергия превращается из одного вида в другой и обратно. Полная энергия колебательного контура как и полная энергия механического осциллятора, в отсутствие диссипации остается неизменной. Чтобы убедиться в этом, нужно в формулу (2) подставить выражение (6) для и выражение для силы тока

Используя формулу (4) для получаем

Рис. 159. Графики зависимости от времени заряда конденсатора энергии электрического поля конденсатора и энергии магнитного поля в катушке

Неизменная полная энергия совпадает с потенциальной энергией в моменты, когда заряд конденсатора максимален, и совпадает с энергией магнитного поля катушки - «кинетической» энергией - в моменты, когда заряд конденсатора обращается в нуль, а ток максимален. При взаимных превращениях два вида энергии совершают гармонические колебания с одинаковой амплитудой в противофазе друг с другом и с частотой относительно своего среднего значения . В этом легко убедиться как из рис. 158, так и с помощью формул тригонометрических функций половинного аргумента:

Графики зависимости от времени заряда конденсатора энергии электрического поля и энергии магнитного поля показаны на рис. 159 для начальной фазы

Количественные закономерности собственных электромагнитных колебаний можно установить непосредственно на основе законов для квазистационарных токов, не обращаясь к аналогии с механическими колебаниями.

Уравнение для колебаний в контуре. Рассмотрим простейший колебательный контур, показанный на рис. 157. При обходе контура, например, против часовой стрелки, сумма напряжений на катушке индуктивности и конденсаторе в такой замкнутой последовательной цепи равна нулю:

Напряжение на конденсаторе связано с зарядом пластины и с емкостью С соотношением Напряжение на индуктивности в любой момент времени равно по модулю и противоположно по знаку ЭДС самоиндукции, поэтому Ток в цепи равен скорости изменения заряда конденсатора: Подставляя силу тока в выражение для напряжения на катушке индуктивности и обозначая вторую производную заряда конденсатора по времени через

Получим Теперь выражение (10) принимает вид

Перепишем это уравнение иначе, вводя по определению :

Уравнение (12) совпадает с уравнением гармонических колебаний механического осциллятора с собственной частотой Решение такого уравнения дается гармонической (синусоидальной) функцией времени (6) с произвольными значениями амплитуды и начальной фазы а. Отсюда следуют все приведенные выше результаты, касающиеся электромагнитных колебаний в контуре.

Затухание электромагнитных колебаний. До сих пор обсуждались собственные колебания в идеализированной механической системе и идеализированном LC-контуре. Идеализация заключалась в пренебрежении трением в осцилляторе и электрическим сопротивлением в контуре. Только в этом случае система будет консервативной и энергия колебаний будет сохраняться.

Рис. 160. Колебательный контур с сопротивлением

Учет диссипации энергии колебаний в контуре можно провести аналогично тому, как это было сделано в случае механического осциллятора с трением. Наличие электрического сопротивления катушки и соединительных проводов неизбежно связано с выделением джоулевой теплоты. Как и раньше, это сопротивление можно рассматривать как самостоятельный элемент в электрической схеме колебательного контура, считая катушку и провода идеальными (рис. 160). При рассмотрении квазистационарного тока в таком контуре в уравнение (10) нужно добавить напряжение на сопротивлении

Подставляя в получаем

Вводя обозначения

перепишем уравнение (14) в виде

Уравнение (16) для имеет точно такой же вид, как и уравнение для при колебаниях механического осциллятора с

трением, пропорциональным скорости (вязким трением). Поэтому при наличии электрического сопротивления в контуре электромагнитные колебания происходят по такому же закону, как и механические колебания осциллятора с вязким трением.

Диссипация энергии колебаний. Как и при механических колебаниях, можно установить закон убывания со временем энергии собственных колебаний, применяя закон Джоуля-Ленца для подсчета выделяющейся теплоты:

В результате в случае малого затухания для промежутков времени, много больших периода колебаний, скорость убывания энергии колебаний оказывается пропорциональной самой энергии:

Решение уравнения (18) имеет вид

Энергия собственных электромагнитных колебаний в контуре с сопротивлением убывает по экспоненциальному закону.

Энергия колебаний пропорциональна квадрату их амплитуды. Для электромагнитных колебаний это следует, например, из (8). Поэтому амплитуда затухающих колебаний, в соответствии с (19), убывает по закону

Время жизни колебаний. Как видно из (20), амплитуда колебаний убывает в раз за время равное независимо от начального значения амплитуды Это время х носит название времени жизни колебаний, хотя, как видно из (20), колебания формально продолжаются бесконечно долго. В действительности, конечно, о колебаниях имеет смысл говорить лишь до тех пор, пока их амплитуда превышает характерное значение уровня тепловых шумов в данной цепи. Поэтому фактически колебания в контуре «живут» конечное время, которое, однако, может в несколько раз превосходить введенное выше время жизни х.

Часто бывает важно знать не само по себе время жизни колебаний х, а число полных колебаний, которое произойдет в контуре за это время х. Это число умноженное на называют добротностью контура.

Строго говоря, затухающие колебания не являются периодическими. При малом затухании можно условно говорить о периоде, под которым понимают промежуток времени между двумя

последонательными максимальными значениями заряда конденсатора (одинаковой полярности), либо максимальными значениями тока (одного направления).

Затухание колебаний влияет на период, приводя к его возрастанию по сравнению с идеализированным случаем отсутствия затухания. При малом затухании увеличение периода колебаний очень незначительно. Однако при сильном затухании колебаний вообще может не быть: заряженный конденсатор будет разряжаться апериодически, т. е. без изменения направления тока в контуре. Так будет при т. е. при

Точное решение. Сформулированные выше закономерности затухающих колебаний следуют из точного решения дифференциального уравнения (16). Непосредственной подстановкой можно убедиться, что оно имеет вид

где - произвольные постоянные, значения которых определяются из начальных условий. При малом затухании множитель при косинусе можно рассматривать как медленно меняющуюся амплитуду колебаний.

Задача

Перезарядка конденсаторов через катушку индуктивности. В цепи, схема которой показана на рис. 161, заряд верхнего конденсатора равен а нижний не заряжен. В момент ключ замыкают. Найти зависимость от времени заряда верхнего конденсатора и тока в катушке.

Рис. 161. В начальный момент времени заряжен только один конденсатор

Рис. 162. Заряды конденсаторов и ток в контуре после замыкания ключа

Рис. 163. Механическая аналогия для электрической цепи, показанной на рис. 162

Решение. После замыкания ключа в цепи возникают колебания: верхний конденсатор начинает разряжаться через катушку, заряжая при этом нижний; затем все происходит в обратном направлении. Пусть, например, при положительно заряжена верхняя обкладка конденсатора. Тогда

спустя малый промежуток времени знаки зарядов обкладок конденсаторов и направление тока будут такими, как показано на рис. 162. Обозначим через заряды тех обкладок верхнего и нижнего конденсаторов, которые соединены между собой через катушку индуктивности. На основании закона сохранения электрического заряда

Сумма напряжений на всех элементах замкнутого контура в каждый момент времени равна нулю:

Знак напряжения на конденсаторе соответствует распределению зарядов на рис. 162. и указанному направлению тока. Выражение для тока через катушку можно записать в любом из двух видов:

Исключим из уравнения помощью соотношений (22) и (24):

Вводя обозначения

перепишем (25) в следующем виде:

Если вместо ввести функцию

и учесть, что то (27) принимает вид

Это обычное уравнение незатухающих гармонических колебаний, которое имеет решение

где и - произвольные постоянные.

Возвращаясь от функции получим для зависимости от времени заряда верхнего конденсатора следующее выражение:

Для определения постоянных и а учтем, что в начальный момент заряд а ток Для силы тока из (24) и (31) имеем

Поскольку отсюда следует, что Подставляя теперь в и учитывая, что получаем

Итак, выражения для заряда и силы тока имеют вид

Характер осцилляций заряда и тока особенно нагляден при одинаковых значениях емкостей конденсаторов . В этом случае

Заряд верхнего конденсатора осциллирует с амплитудой около среднего значения, равного За половину периода колебаний он уменьшается от максимального значения в начальный момент до нуля, когда весь заряд оказывается на нижнем конденсаторе.

Выражение (26) для частоты колебаний разумеется, можно было написать сразу, поскольку в рассматриваемом контуре конденсаторы соединены последовательно. Однако написать выражения (34) непосредственно затруднительно, так как при таких начальных условиях нельзя входящие в контур конденсаторы заменить одним эквивалентным.

Наглядное представление о происходящих здесь процессах дает механический аналог данной электрической цепи, показанный на рис. 163. Одинаковые пружины соответствуют случаю конденсаторов одинаковой емкости. В начальный момент левая пружина сжата, что соответствует заряженному конденсатору, а правая находится в недеформированном состоянии, так как аналогом заряда конденсатора здесь служит степень деформации пружины. При прохождении через среднее положение обе пружины частично сжаты, а в крайнем правом положении левая пружина недеформирована, а правая сжата так же, как левая в начальный момент, что соответствует полному перетеканию заряда с одного конденсатора на другой. Хотя шар совершает обычные гармонические колебания около положения равновесия, деформация каждой из пружин описывается функцией, среднее значение которой отлично от нуля.

В отличие от колебательного контура с одним конденсатором, где при колебаниях происходит повторяющаяся его полпая перезарядка, в рассмотренной системе первоначально заряженный конденсатор полностью не перезаряжается. Например, при его заряд уменьшается до нуля, а затем снова восстанавливается в той же полярности. В остальном эти колебания не отличаются от гармонических колебаний в обычном контуре. Энергия этих колебаний сохраняется, если, разумеется, можно пренебречь сопротивлением катушки и соединительных проводов.

Поясните, почему из сопоставления формул (1) и (2) для механической и электромагнитной энергий сделан вывод о том, что аналогом жесткости к является а аналогом массы индуктивность а не наоборот.

Приведите обоснование вывода выражения (4) для собственной частоты электромагнитных колебаний в контуре из аналогии с механическим пружинным осциллятором.

Гармонические колебания в -контуре характеризуются амплитудой, частотой, периодом, фазой колебаний, начальной фазой. Какие из этих величин определяются свойствами самого колебательного контура, а какие зависят от способа возбуждения колебаний?

Докажите, что средние значения электрической и магнитной энергий при собственных колебаниях в контуре равны между собой и составляют половину полной электромагнитной энергии колебаний.

Как применить законы квазистационарных явлений в электрической цепи для вывода дифференциального уравнения (12) гармонических колебаний в -контуре?

Какому дифференциальному уравнению удовлетворяет сила тока в LC-контуре?

Проведите вывод уравнения для скорости убывания энергии колебаний при малом затухании аналогично тому, как это было сделано для механического осциллятора с трением, пропорциональным скорости, и покажите, что для промежутков времени, значительно превосходящих период колебаний, это убывание происходит по экспоненциальному закону. Какой смысл имеет использованный здесь термин «малое затухание»?

Покажите, что функция даваемая формулой (21), удовлетворяет уравнению (16) при любых значениях и а.

Рассмотрите механическую систему, показанную на рис. 163, и найдите зависимость от времени деформации левой пружины и скорости массивного тела.

Контур без сопротивления с неизбежными потерями. В рассмотренной выше задаче, несмотря на не совсем обычные начальные условия для зарядов на конденсаторах, можно было применить обычные уравнения для электрических цепей, поскольку там были выполнены условия квазистационарности протекающих процессов. А вот в цепи, схема которой показана на рис. 164, при формальном внешнем сходстве со схемой на рис. 162, условия квазистационарности не выполняются, если в начальный момент один конденсатор заряжен, а второй - нет.

Обсудим подробнее причины, по которым здесь нарушаются условия квазистационарности. Сразу после замыкания

Рис. 164. Электрическая цепь, для которой не выполняются условия квазистационарности

ключа все процессы разыгрываются только в соединенных между собой конденсаторах, так как нарастание тока через катушку индуктивности происходит сравнительно медленно и поначалу ответвлением тока в катушку можно пренебречь.

При замыкании ключа возникают быстрые затухающие колебания в контуре, состоящем из конденсаторов и соединяющих их проводов. Период таких колебаний очень мал, так как мала индуктивность соединительных проводов. В результате этих колебаний заряд на пластинах конденсаторов перераспределяется, после чего два конденсатора можно рассматривать как один. Но в первый момент этого делать нельзя, ибо вместе с перераспределением зарядов происходит и перераспределение энергии, часть которой переходит в теплоту.

После затухания быстрых колебаний в системе происходят колебания, как в контуре с одним конденсатором емкости заряд которого в начальный момент равен первоначальному заряду конденсатора Условием справедливости приведенного рассуждения является малость индуктивности соединительных проводов по сравнению с индуктивностью катушки.

Как и в рассмотренной задаче, полезно и здесь найти механическую аналогию. Если там две пружины, соответствующие конденсаторам, были расположены по обе стороны массивного тела, то здесь они должны быть расположены по одну сторону от него, так чтобы колебания одной из них могли передаваться другой при неподвижном теле. Вместо двух пружин можно взять одну, но только в начальный момент она должна быть деформирована неоднородно.

Захватим пружину за середину и растянем ее левую половину на некоторое расстояние Вторая половина пружины останется в недеформированном состоянии, так что груз в начальный момент смещен из положения равновесия вправо на расстояние и покоится. Затем отпустим пружину. К каким особенностям приведет то обстоятельство, что в начальный момент пружина деформирована неоднородно? ибо, как нетрудно сообразить, жесткость «половины» пружины равна Если масса пружины мала по сравнению с массой шара, частота собственных колебаний пружины как протяженной системы много больше частоты колебаний шара на пружине. Эти «быстрые» колебания затухнут за время, составляющее малую долю периода колебаний шара. После затухания быстрых колебаний натяжение в пружине перераспределяется, а смещение груза практически остается равным так как груз за это время не успевает заметно сдвинуться. Деформация пружины становится однородной, а энергия системы равной

Таким образом, роль быстрых колебаний пружины свелась к тому, что запас энергии системы уменьшился до того значения, которое соответствует однородной начальной деформации пружины. Ясно, что дальнейшие процессы в системе не отличаются от случая однородной начальной деформации. Зависимость смещения груза от времени выражается той же самой формулой (36).

В рассмотренном примере в результате быстрых колебаний превратилась во внутреннюю энергию (в теплоту) половина первоначального запаса механической энергии. Ясно, что, подвергая начальной деформации не половину, а произвольную часть пружины, можно превратить во внутреннюю энергию любую долю первоначального запаса механической энергии. Но во всех случаях энергия колебаний груза на пружине соответствует запасу энергии при той же однородной начальной деформации пружины.

В электрической цепи в результате затухающих быстрых колебаний энергия заряженного конденсатора частично выделяется в виде джоулевой теплоты в соединительных проводах. При равных емкостях это будет половина первоначального запаса энергии. Вторая половина остается в форме энергии сравнительно медленных электромагнитных колебаний в контуре, состоящем из катушки и двух соединенных параллельно конденсаторов С, и

Таким образом, в этой системе принципиально недопустима идеализация, при которой пренебрегается диссипацией энергии колебаний. Причина этого в том, что здесь возможны быстрые колебания, не затрагивающие катушки индуктивности или массивного тела в аналогичной механической системе.

Колебательный контур с нелинейными элементами. При изучении механических колебаний мы видели, что колебания далеко не всегда бывают гармоническими. Гармонические колебания - это характерное свойство линейных систем, в которых

возвращающая сила пропорциональна отклонению от положения равновесия, а потенциальная энергия - квадрату отклонения. Реальные механические системы этими свойствами, как правило, не обладают, и колебания в них можно считать гармоническими лишь при малых отклонениях от положения равновесия.

В случае электромагнитных колебаний в контуре может сложиться впечатление, что мы имеем дело с идеальными системами, в которых колебания строго гармонические. Однако это верно лишь до тех пор, пока емкость конденсатора и индуктивность катушки можно считать постоянными, т. е. не зависящими от заряда и тока. Конденсатор с диэлектриком и катушка с сердечником, строго говоря, представляют собой нелинейные элементы. Когда конденсатор заполнен сегнетоэлектриком, т. е. веществом, диэлектрическая проницаемость которого сильно зависит от приложенного электрического поля, емкость конденсатора уже нельзя считать постоянной. Аналогично, индуктивность катушки с ферромагнитным сердечником зависит от силы тока, так как ферромагнетик обладает свойством магнитного насыщения.

Если в механических колебательных системах массу, как правило, можно считать постоянной и нелинейность возникает только из-за нелинейного характера действующей силы, то в электромагнитном колебательном контуре нелинейность может возникать как за счет конденсатора (аналога упругой пружины), так и за счет катушки индуктивности (аналога массы).

Почему для колебательного контура с двумя параллельными конденсаторами (рис. 164) неприменима идеализация, в которой система считается консервативной?

Почему быстрые колебания, приводящие к диссипации энергии колебаний в контуре на рис. 164, не возникали в контуре с двумя последовательными конденсаторами, показанными на рис. 162?

Какие причины могут приводить к несинусоидальности электромагнитных колебаний в контуре?

Колебательный контур представляет собой простую электрическую цепь, состоящую из катушки индуктивности и емкости конденсатор. В такой схеме могут возникать колебания тока или напряжения. Резонансная частота таких колебаний определяется по формуле Томсона.

Эта разновидность LC колебательного контура (КК) простейший пример резонансной колебательной цепи. Состоит из последовательно соединенных катушки индуктивности и емкости. При протекание через такую схему переменного тока, величина его определяется по : I = U / Х Σ , где Х Σ - сумма реактивных сопротивлений катушки индуктивности и емкости.

Напомню зависимости реактивного сопротивления емкости и индуктивности от частоты напряжения их формулы выглядят вот так:

Из формул хорошо видно, что с ростом частоты, реактивное сопротивление индуктивности увеличивается. В отличии от катушки, у конденсатора при увеличении частоты, реактивное сопротивление снижается. На рисунке ниже приведены графические зависимости реактивных сопротивлений катушки индуктивности X L и емкости Х C от циклической частоты омега ω , и график зависимости ω от их алгебраической суммы Х Σ . График показывает зависимость от частоты общего реактивного сопротивления последовательного колебательного контура состоящего из конденсатора и индуктивности.

Из графика хорошо видно, что на определенной частоте ω=ω р , реактивные сопротивления индуктивности и емкости совпадают по значению, но противоположны по знаку, а общее сопротивление цепи равно нулю. На этой частоте в контуре будет протекать максимально возможный ток, ограниченный только омическими потерями в индуктивности (т.е. активным сопротивлением катушки) и внутренним активным сопротивлением источника тока. Эту частоту, при которой происходит это явление называют частотой резонанса. Кроме того из графика можно сделать следующий вывод: на частотах, ниже резонансной частоты реактивное сопротивление последовательного КК имеет емкостной фактор, а на более высоких частотах носит индуктивный характер. Резонансная частоты, может быть найдена при помощи формулы Томсона, которая легко выводится из формул реактивных сопротивлений обоих компонентов КК, приравняв их реактивные сопротивления:

На рисунке ниже, отобразим эквивалентную схему последовательного резонансного контура с учетом активных омических потерь R , при идеальном источнике тока гармонического напряжения с определенной амплитудой U . Полное сопротивление, или его еще называют импедансом схемы вычисляется: Z = √(R 2 +X Σ 2) , где X Σ = ω L-1/ωC . На частоте резонанса, когда обои реактивные сопротивления X L = ωL и Х С = 1/ωС равны по модулю, X Σ стремится к нулю и носит только активный характер, а ток в схеме вычисляется отношением амплитуды напряжения источника тока к сопротивлению потерь по закону Ома: I= U/R . При этом на катушке и емкости, в которых имеется запас реактивных составляющих энергии, падает одинаковое значение напряжения, т.е U L = U С = IX L = IX С .

На любой частоте, кроме резонансной, напряжения на индуктивности и емкости отличаются - они зависят от амплитуды тока в схеме и номиналами модулей реактивных сопротивлений X L и X С .Поэтому резонанс в последовательном колебательном контуре называют резонансом напряжений .

Очень важными характеристиками КК также являются его волновое сопротивление ρ и добротность КК Q . Волновым сопротивлением ρ считают величину реактивного сопротивления обоих компонентов (L,C) на резонансной частоте: ρ = Х L = Х C при ω =ω р . Волновое сопротивление можно рассчитать по следующей формуле: ρ = √(L/C) . Волновое сопротивление ρ считается количественной мерой оценки энергии, сохраненными реактивными компонентами контура - W L = (LI 2)/2 и W C =(CU 2)/2 . Отношение энергии, сохраненными реактивными элементами КК, к энергии резистивных потерь за период называют добротностью Q КК. Добротность колебательного контура - величина, определяющая амплитуду и ширину амплитудно частотной характеристики резонанса и говорящая о том, во сколько раз сохраненной энергии в КК больше, чем потери энергии за единичный период колебаний. Добротность кроме того учитывает и активного сопротивление R . Для последовательного КК в RLC цепях, в котором все три пассивных компонента соединены последовательно, добротность вычисляется по выражению:

где R , L и C - сопротивление, индуктивность и ёмкость резонансной цепи КК.

Величину, обратную добротности d = 1 / Q физики назвали затуханием КК. Для определения добротности обычно применяют выражение Q = ρ / R , где R -сопротивление омических потерь КК, характеризующее мощность активных потерь КК Р = I 2 R . Добротность большинства колебательных контуров варьируется от нескольких единиц до сотни и выше. Добротность таких колебательных систем, как пьезоэлектрические или может быть нескольких тысяч и даже больше.

Частотные свойства КК обычно оценивают с помощью АЧХ, при этом сами схемы рассматривают как четырёхполюсники. На рисунках ниже отображены элементарные четырехполюсники, содержащие последовательный КК и АЧХ этих цепей. По оси Х графиков отложен коэффициент передачи схемы по напряжению К, или отношение выходного напряжения к входному.

Для пассивных схем (не имеющих усилительных элементов и источников энергии), величина К никогда не выше единицы. Сопротивление переменному току, будет минимально при резонансной частоте. Тогда коэффициент передачи стремится к единице. На частотах, отличных от резонансной, сопротивление КК переменному току велико и коэффициент передачи будет близок к нулевым значениям.

При резонансе источник входного сигнала практически замкнут накоротко низким сопротивлением КК, поэтому коэффициент передачи падает почти до нуля. Наоборот, при частотах входного воздействия, отстоящих от резонансной, коэффициент стремится к единице. Свойство КК изменять коэффициент передачи на частотах, около резонансных, широко применяется в радиолюбительской практике, когда необходимо выделить сигнал с требуемой частотой из множества подобных, но на других частотах. Так, в любом радиоприемнике при помощи КК выполняется настройка на частоту требуемой радиостанции. Свойство выделять из множества частот только одну называют селективностью. При этом интенсивность изменения коэффициента передачи при настройке частоты воздействия от резонанса описывают полосой пропускания. За нее берется диапазон частот, в диапазонах которого уменьшение (увеличение) коэффициента передачи относительно его значения на резонансной частоте, не выше 0,7 (дБ).

Пунктирными линиями на рисунках обозначены АЧХ подобных цепей, КК которых имеют такие же резонансы, но обладающие меньшей добротностью. Как видим из графиков, при этом увеличивается полоса пропускания и уменьшается ее селективность.

В данной цепи параллельно соединены два реактивных элемента с разным уровнем реактивности. На рисунке ниже рассмотрены графические зависимости реактивных проводимостей индуктивности B L = 1/ωL и емкости конденсатора В C = -ωC , а также общей проводимости В Σ . И в этом колебательном контуре, имеется резонансная частота на которой реактивные сопротивления обоих компонентов одинаковы. Это говорит о том, что на этой частоте параллельный КК обладает огромным сопротивлением переменному току.


Сопротивление реального параллельного КК (с потерями), разумеется, не стремится к бесконечности - оно тем ниже, чем выше омическое сопротивление потерь в контуре, т.е снижается прямо пропорционально уменьшению добротности.

Рассмотрим простейшую цепь, состоящую из источника гармонических колебаний и параллельного КК. Если, собственная частота колебаний генератора (источника напряжения) совпадает с резонансной частотой контура, то индуктивная и емкостная ветви оказывают одинаковое сопротивление переменному току, и токи в ветвях будут совершенно одинаковыми. Поэтому уверенно скажем, что в этой схеме имеет место резонанс токов . Реактивности обоих компонентов вполне успешно компенсируют друг друга, и сопротивление КК протекающему току становится полностью активным (имеет только резистивную составляющую). Величина этого сопротивления, вычисляется произведением добротности КК на характеристическое сопротивление R экв = Q·ρ . На других частотах сопротивление параллельного КК падает и приобретает реактивный характер на более низких индуктивный, а на более высоких - емкостной.

Рассмотрим, зависимость коэффициентов передачи четырехполюсников от частоты в данном случае.


Четырехполюсник, на частоте резонанса представляет собой достаточно большое сопротивление протекающему переменному току, поэтому при ω=ω р его коэффициент передачи стремится к нулю (и это даже с учетом реальных омических потерь). На прочих частотах, отличных от резонансной, сопротивление КК будет падать, а коэффициент передачи четырехполюсника - увеличиваться. Для четырехполюсника второго варианта, ситуация будет диаметрально противоположной - на резонансной частоте КК будет оказывать очень большое сопротивление, т.е коэффициент передачи будет максимален и стремится к единице). При существенном отличии частоты от резонансной, источник сигнала, окажется практически зашунтированным, а коэффициент передачи будет стремится к нулю.

Предположим нам нужно изготовить параллельный КК, с частотой резонанса 1 МГц. Осуществим предварительный упрощенный расчет такого КК. То есть, вычислим необходимые значения емкости и индуктивности. Воспользуемся упрощенной формулой:

L=(159,1/F) 2 / C где:

L индуктивность катушки в мкГн; С емкость конденсатора в пФ; F резонансная частота в МГц

Зададимся частотой в 1 МГц и емкостью 1000 пФ. Получим:

L=(159,1/1) 2 /1000 = 25 мкГн

Таким образом если в нашей радиолюбительской самоделки используется КК на частоту 1 МГц, то нам необходимо взять емкость на 1000 пФ и индуктивность на 25 мкГн. Конденсатор достаточно легко подобрать, а вот индуктивность ИМХО проще изготовить самостоятельно.

Для этого рассчитаем число витков для катушки без сердечника

N=32 *v(L/D) где:

N необходимое число витков; L заданная индуктивность в мкГн; D диаметр каркаса катушки.

Предположим, диаметр каркаса 5 мм, тогда:

N=32*v(25/5) = 72 витка

Данная формула считается приближенной, она совершенно не учитывает собственную межвитковую емкость индуктивности. Формула служит для предварительного расчета параметров катушки, которые затем подстраиваются при регулировке контура в устройстве.

В радиолюбительской практике очень часто применяются катушки с подстроечным сердечником из феррита, обладающие длиной 12-14 мм и диаметром 2,5 - 3 мм. Такие сердечники, активно используются в колебательных контурах приемников.

Электрический колебательный контур является обязательным элементом любого радиоприемника, независимо от его сложности. Без колебательного контура прием сигналов радиостанции вообще невозможен.

Простейший электрический колебательный контур (рис. 20) представляет собой замкнутую цепь, состоящую из катушки индуктивности L и конденсатора С. При некоторых условиях в нем могут возникать и поддерживаться электрические колебания.

Чтобы понять сущность этого явления, проведи сначала несколько опытов с нитяным маятником (рис. 21). На нитке длиной 100 см подвесь шарик, слепленный из пластилина, или иной грузик массой в 20...40 г. Выведи маятник из положения равновесия и, пользуясь часами с секундной стрелкой, сосчитай, сколько полных колебаний он делает за минуту. Примерно 30. Следовательно, собственная частота колебаний этого маятника равна 0,5 Гц, а период (время одного полного колебания) — 2 с. За период потенциальная энергия маятника дважды переходит в кинетическую, а кинетическая в потенциальную.

Укороти нить маятника наполовину. Собственная частота колебаний маятника увеличится в полтора раза и во столько же уменьшится период колебаний. Вывод: с уменьшением длины маятника частота его собственных колебаний увеличивается, а период пропорционально уменьшается.

Изменяя длину подвески маятника, добейся, чтобы его собственная частота колебаний составляла 1 Гц (одно полное колебание в секунду). Это должно быть при длине нитки около 25 см. В этом случае период колебаний маятника будет равен 1 с.

Колебания нитяного маятника являются затухающими. Свободные колебания любого тела всегда затухающие. Они могут стать незатухающими только в том случае, если маятник в такт с его колебаниями слегка подталкивать, компенсируя таким образом ту энергию, которую он затрачивает на преодоление сопротивления, оказываемого ему воздухом и силой трения.

Частота собственных колебаний маятника зависит от его массы и длины подвески.

Теперь натяни горизонтально нетолстую веревку или шпагат. Привяжи к растяжке тот же маятник (рис. 22). Перекинь через веревку еще один такой же маятник, но с более длинной ниткой. Длину подвески этого маятника можно изменять, подтягивая рукой свободный конец нитки. Приведи его в колебательное движение. При этом первой маятник тоже станет колебаться, но с меньшим размахом (амплитудой). Не останавливая колебаний второго маятника, постепенно уменьшай длину его подвески — амплитуда колебаний первого маятника будет увеличиваться.

В этом опыте, иллюстрирующем резонанс колебаний, первый маятник является приемником механических колебаний, возбуждаемых вторым маятником — передатчиком этих колебаний. Причиной, вынуждающей первый маятник колебаться, являются периодические колебания растяжки с частотой, равной частоте колебаний второго маятника. Вынужденные колебания первого маятника будут иметь максимальную амплитуду лишь тогда, когда его собственная частота совпадает с частотой колебаний второго маятника.

Собственная частота, вынужденные колебания и резонанс, которые ты наблюдал в этих опытах, — явления, свойственные и электрическому колебательному контуру.

Электрические колебания в контуре. Чтобы возбудить колебания в контуре, надо его конденсатор зарядить от источника постоянного напряжения, а затем отключить источник и замкнуть цепь контура (рис. 23). С этого момента конденсатор начнёт разряжаться через катушку индуктивности, создавая в цепи контура нарастающий по силе ток; а вокруг катушки индуктивности — магнитное поле тока. Когда конденсатор полностью разрядится и ток в цепи станет равным нулю, магнитное поле вокруг катушки окажется наиболее сильным — электрический заряд конденсатора преобразовался в магнитное поле катушки. Ток в контуре некоторое время булет идти в том же направлении, но уже за счет убывающей энергии магнитного поля, накопленной катушкой, а конденсатор начнет заряжаться. Как только магнитное поле катушки исчезнет, ток в контуре на мгновение прекратится. Но к этому моменту конденса-fop окажется перезаряженным, поэтому в цепи контура вновь пойдет ток, но уже в противоположном направлении. В результате в контуре возникают колебания электрического тока, продолжающиеся до тех пор, пока энергия, запасенная конденсатором, не израсходуется на преодоление сопротивления проводников контура.

Электрические колебания, возбужденные в контуре зарядом конденсатора, свободные, а следовательно, за-тухающие. Зарядив снова конденсатор, в контуре мож-но возбудить новую серию затухающих колебаний.

Подключи к батарее 3336Л электромагнитные головные телефоны. В момент замыкания цепи в телефонах появится звук, напоминающий щелчок. Такой же щелчок слышен и в момент отключения телефонов от батареи. Заряди от этой батарей бумажный конденсатор возможно большей емкости, а затем, отключив батарею, подключи к нему те же телефоны. В телефонах услышишь короткий звук низкого тона. Но в момент отключения телефонов от конденсатора такого звука не будет.

В первом из этих опытов щелчки в телефонах являются следствием одиночных колебаний их мембран при изменении силы магнитных полей катушек электромагнитных систем телефонов в моменты появления и исчезновения тока в них. Во втором опыте звук в телефонах — это колебания их мембран под действием переменных магнитных полей катушек телефонов. Они создаются короткой очередью затухающих колебаний очень низкой частоты, возбужденных в. этом контуре после подключения заряженного конденсатора.

Собственная частота электрических колебаний в контуре зависит от индуктивности его катушки и емкости конденсатора. Чем они больше, тем ниже частота колебаний в контуре и, наоборот, чем они меньше, тем выше частота колебаний в контуре. Изменяя индуктивность (число витков) катушки и емкость конденсатора, можно в широких пределах изменять частоту собственных электрических колебаний в контуре.

Чтобы вынужденные колебания в контуре были незатухающими, контур в такт с колебаниями в нем надо пополнять дополнительной энергией. Для приемного контура источником этой энергии могут быть электрические колебания высокой частоты, индуцируемые радиоволнами в антенне радиоприемника.

Контур в радиоприемнинике. Если к колебательному контуру подключить антенну, заземление и цепь, составленную из диода, выполняющего роль детектора, и телефонов, то получится простейший радиоприемник — детекторный (рис. 24).

Для колебательного контура такого приемника используй катушку индуктивности, намотанную тобой еще при прохождении третьего практикума. Конденсатор переменной емкости (G 2) для плавной и. точной настройки контура на частоту радиостанции сделай из двух жестяных пластин, припаяв к ним проводники. Между пластинами, чтобы они не замыкались, положи лист сухой писчей или газетной бумаги. Емкость такого конденсатора будет тем больше, чем больше площадь взаимного перекрытия пластин и чем меньше расстояние между ними. При размерах пластин 150X250 мм и расстоянии между ними, равном толщине бумаги, наибольшая емкость та?-кого конденсатора может быть 400...450 пФ, что тебя вполне устроит, а наименьшая несколько пикофарад. Антенной-времянкой (W 1) может служить хорошо изолированный от земли и от стен здания отрезок провода длиной 10...15 м, подвешенный на высоте 10...12 м. Для заземления можно использовать металлический штырь, вбитый в землю, трубы водопровода или центрального отопления, имеющие, как правило, хороший контакт с землей.

Роль детектора (VI ) может выполнять точечный диод, например, серии Д9 или Д2 с любым буквенным индексом. В1 — головные телефоны электромагнитные, высоко-омные (с катушками электромагнитов сопротивлением постоянному току 1500...2200 Ом), например, типа ТОН-1. Параллельно телефонам подключи конденсатор (СЗ) емкостью 3300...6200 пФ.

Все соединения должны быть электрически надежными. Лучше, если они пропаяны. Из-за плохого контакта в любом из соединений приемник работать не будет. Приемник не будет работать и в том случае, если в его цепях будут короткие замыкания или неправильные соединения.

Настройка контура приемника на частоту радиостанции осуществляется: грубая — скачкообразным измене-нием числа витков катушки, включаемых в контур (на рис. 24 показано штриховой линией со стрелкой); плав-ная и точная — изменением емкости конденсатора путем смещения одной из его пластин относительно другой. Если в городе, крае или области, где ты живешь, работает радиостанция длинноволнового диапазона (735,3...2000 м, что соответствует частотам 408...150 кГц), то в контур включай все витки катушки, а если станция средневолнового диапазона (186,9...571,4 м, что собтвет-ствует частотам 1,608 МГц.„525 кГц), то только часть ее витков.

При одновременной слышимости передач двух радиостанций включи между антенной и контуром конденсатор емкостью 62...82 пФ (на рис. 24 — конденсатор С1, показанный штриховыми линиями). От этого громкость звучания телефонов несколько снизится, но селективность (избирательность) приемника, то есть его спог собность отстраиваться от мешающих станций, улучшится.

Как работает такой приемник в целом? Модулированные колебания высокой частоты, индуцируемые-в проводе антенны радиоволнами многих станций, возбуждают в контуре приемника, в который входит и сама антенна, колебания разных частот и амплитуд. В контуре же возникнут наиболее сильные колебания только той частоты, на которую он настроен в резонанс. Колебания всех других частот контур ослабляет. Чем лучше (добротнее) контур, тем четче он выделяет колебания, соответствующие колебаниям его собственной частоты, и больше их амплитуда.

Детектор также важный элемент приемника. Обладая односторонней проводимостью тока, он выпрямляет высокочастотные модулированные колебания, поступающие к нему от колебательного контура, преобразуя их в колебания низкой, то есть звуковой, частоты, которые телефоны преобразуют в звуковые колебания.

Конденсатор СЗ, подключенный параллельно телефонам, — вспомогательный элемент приемника: сглаживая пульсации тока, выпрямленного детектором, он улучшает условия работы телефонов.

Проведи несколько экспериментов.

1. Настроив приемник на радиостанцию, введи внутрь катушки толстый гвоздь, а затем конденсатором переменной емкости подстрой контур, чтобы восстановить прежнюю громкость звучания телефонов.

2. Сделай то же самое, но вместо гвоздя возьми медный или латунный стержень.

3. Подключи к контурной катушке вместо конденсатора переменной емкости такой конденсатор постоянной емкости (подбери опытным путем), чтобы приемник оказался настроенным на частоту местной станции.

Запомни конечные результаты этих экспериментов. Вводя внутрь катушки металлический сердечник, ты, конечно, заметил, что собственная частота контура при этом изменяется: стальной сердечник уменьшает собственную частоту колебаний в контуре, а медный или латунный, наоборот, увеличивает. Судить об этом можно по тому, что в первом случае для подстройки контура на сигналы той же станции емкость контурного конденсатора пришлось уменьшить, а во втором увеличить.

Контурная катушка с высокочастотным сердечником. Подавляющее большинство контурных катушек современных приемников имеет высокочастотные, обычно ферритовые, сердечники в виде стержней, чашек или колец. Ферритовые стержни, кроме того, являются обязательными элементами вхрдных контуров всех транзисторных переносных и так называемых «карманных» приемников.

Высокочастотный сердечник как бы «сгущает» линии магнитного поля катушки, повышая ее индуктивность и добротность. Подвижный сердечник, кроме того, позволяет регулировать индуктивность катушки, что используют для подстройки контуров на заданную частоту, а иногда даже настраивать контуры на частоты радиостанций. В порядке эксперимента сделай приемник с колебательным контуром, настраиваемым ферритовым стержнем марки 400НН или 600НН длиной 120...150 мм (рис. 25). Такие стержни используют Для магнитных антенн транзисторных приемников. Из полоски бумаги, обернув ею стержень 3...4 раза, склей и хорошо просуши гильзу длиной 80...90 мм. Внутрь гильзы стержень должен входить свободно. Вырежь из картона 9... 10 колец и приклей их к гильзе на расстоянии 6...7 мм друг от друга. На получившийся секционированный каркас -намотай 300...350 витков лровода ПЭВ, ПЭЛ или ПЭЛШО 0,2...0,25, укладывая его по 35...40 витков в каждой секции. От 35...40-го -и от 75...80-го витков сделай два отвода в виде петель, чтобы иметь возможность изменять число витков катушки, включаемых в контур.

Подключи к катушке антенну, заземление и цепь детектор — телефоны. Чем больше витков катушки будет участвовать в работе контура и глубже внутрь катушки будет введен ферритовый стержень, тем на большую длину волны может быть настроен приемник.

Детекторный приемник работает исключительно благодаря электромагнитной энергии, излучаемой антенной передатчика радиостанции. Поэтому телефоны звучат негромко. Чтобы повысить громкость работы детекторного приемника, к нему надо добавить усилитель, например транзисторный.

Литература: Борисов В. Г. Практикум начинающего радиолюбителя.2-е изд., перераб. и доп. — М.: ДОСААФ, 1984. 144 с., ил. 55к.

  • Электромагнитные колебания – это периодические изменения со временем электрических и магнитных величин в электрической цепи.
  • Свободными называются такие колебания , которые возникают в замкнутой системе вследствие отклонения этой системы от состояния устойчивого равновесия.

При колебаниях происходит непрерывный процесс превращения энергии системы из одной формы в другую. В случае колебаний электромагнитного поля обмен может идти только между электрической и магнитной составляющей этого поля. Простейшей системой, где может происходить этот процесс, является колебательный контур .

  • Идеальный колебательный контур (LC-контур ) - электрическая цепь, состоящая из катушки индуктивностью L и конденсатора емкостью C .

В отличие от реального колебательного контура, который обладает электрическим сопротивлением R , электрическое сопротивление идеального контура всегда равна нулю. Следовательно, идеальный колебательный контур является упрощенной моделью реального контура.

На рисунке 1 изображена схема идеального колебательного контура.

Энергии контура

Полная энергия колебательного контура

\(W=W_{e} + W_{m}, \; \; \; W_{e} =\dfrac{C\cdot u^{2} }{2} = \dfrac{q^{2} }{2C}, \; \; \; W_{m} =\dfrac{L\cdot i^{2}}{2},\)

Где W e - энергия электрического поля колебательного контура в данный момент времени, С - электроемкость конденсатора, u - значение напряжения на конденсаторе в данный момент времени, q - значение заряда конденсатора в данный момент времени, W m - энергия магнитного поля колебательного контура в данный момент времени, L - индуктивность катушки, i -значение силы тока в катушке в данный момент времени.

Процессы в колебательном контуре

Рассмотрим процессы, которые возникают в колебательном контуре.

Для выведения контура из положения равновесия зарядим конденсатор так, что на его обкладках будет заряд Q m (рис. 2, положение 1 ). С учетом уравнения \(U_{m}=\dfrac{Q_{m}}{C}\) находим значение напряжения на конденсаторе. Тока в цепи в этом момент времени нет, т.е. i = 0.

После замыкания ключа под действием электрического поля конденсатора в цепи появится электрический ток, сила тока i которого будет увеличиваться с течением времени. Конденсатор в это время начнет разряжаться, т.к. электроны, создающие ток, (Напоминаю, что за направление тока принято направление движения положительных зарядов) уходят с отрицательной обкладки конденсатора и приходят на положительную (см. рис. 2, положение 2 ). Вместе с зарядом q будет уменьшаться и напряжение u \(\left(u = \dfrac{q}{C} \right).\) При увеличении силы тока через катушку возникнет ЭДС самоиндукции, препятствующая изменению силы тока. Вследствие этого, сила тока в колебательном контуре будет возрастать от нуля до некоторого максимального значения не мгновенно, а в течение некоторого промежутка времени, определяемого индуктивностью катушки.

Заряд конденсатора q уменьшается и в некоторый момент времени становится равным нулю (q = 0, u = 0), сила тока в катушке достигнет некоторого значения I m (см. рис. 2, положение 3 ).

Без электрического поля конденсатора (и сопротивления) электроны, создающие ток, продолжают свое движение по инерции. При этом электроны, приходящие на нейтральную обкладку конденсатора, сообщают ей отрицательный заряд, электроны, уходящие с нейтральной обкладки, сообщают ей положительный заряд. На конденсаторе начинает появляться заряд q (и напряжение u ), но противоположного знака, т.е. конденсатор перезаряжается. Теперь новое электрическое поле конденсатора препятствует движению электронов, поэтому сила тока i начинает убывать (см. рис. 2, положение 4 ). Опять же это происходит не мгновенно, поскольку теперь ЭДС самоиндукции стремится скомпенсировать уменьшение тока и «поддерживает» его. А значение силы тока I m (в положении 3 ) оказывается максимальным значением силы тока в контуре.

И снова под действием электрического поля конденсатора в цепи появится электрический ток, но направленный в противоположную сторону, сила тока i которого будет увеличиваться с течением времени. А конденсатор в это время будет разряжаться (см. рис. 2, положение 6 )до нуля (см. рис. 2, положение 7 ). И так далее.

Так как заряд на конденсаторе q (и напряжение u ) определяет его энергию электрического поля W e \(\left(W_{e}=\dfrac{q^{2}}{2C}=\dfrac{C \cdot u^{2}}{2} \right),\) а сила тока в катушке i - энергию магнитного поля Wm \(\left(W_{m}=\dfrac{L \cdot i^{2}}{2} \right),\) то вместе с изменениями заряда, напряжения и силы тока, будут изменяться и энергии.

Обозначения в таблице:

\(W_{e\, \max } =\dfrac{Q_{m}^{2} }{2C} =\dfrac{C\cdot U_{m}^{2} }{2}, \; \; \; W_{e\, 2} =\dfrac{q_{2}^{2} }{2C} =\dfrac{C\cdot u_{2}^{2} }{2}, \; \; \; W_{e\, 4} =\dfrac{q_{4}^{2} }{2C} =\dfrac{C\cdot u_{4}^{2} }{2}, \; \; \; W_{e\, 6} =\dfrac{q_{6}^{2} }{2C} =\dfrac{C\cdot u_{6}^{2} }{2},\)

\(W_{m\; \max } =\dfrac{L\cdot I_{m}^{2} }{2}, \; \; \; W_{m2} =\dfrac{L\cdot i_{2}^{2} }{2}, \; \; \; W_{m4} =\dfrac{L\cdot i_{4}^{2} }{2}, \; \; \; W_{m6} =\dfrac{L\cdot i_{6}^{2} }{2}.\)

Полная энергия идеального колебательного контура сохраняется с течением времени, поскольку в нем потерь энергии (нет сопротивления). Тогда

\(W=W_{e\, \max } = W_{m\, \max } = W_{e2} + W_{m2} = W_{e4} +W_{m4} = ...\)

Таким образом, в идеальном LC -контуре будут происходить периодические изменения значений силы тока i , заряда q и напряжения u , причем полная энергия контура при этом будет оставаться постоянной. В этом случае говорят, что в контуре возникли свободные электромагнитные колебания .

  • Свободные электромагнитные колебания в контуре - это периодические изменения заряда на обкладках конденсатора, силы тока и напряжения в контуре, происходящие без потребления энергии от внешних источников.

Таким образом, возникновение свободных электромагнитных колебаний в контуре обусловлено перезарядкой конденсатора и возникновением ЭДС самоиндукции в катушке, которая «обеспечивает» эту перезарядку. Заметим, что заряд конденсатора q и сила тока в катушке i достигают своих максимальных значений Q m и I m в различные моменты времени.

Свободные электромагнитные колебания в контуре происходят по гармоническому закону:

\(q=Q_{m} \cdot \cos \left(\omega \cdot t+\varphi _{1} \right), \; \; \; u=U_{m} \cdot \cos \left(\omega \cdot t+\varphi _{1} \right), \; \; \; i=I_{m} \cdot \cos \left(\omega \cdot t+\varphi _{2} \right).\)

Наименьший промежуток времени, в течение которого LC -контур возвращается в исходное состояние (к начальному значению заряда данной обкладки), называется периодом свободных (собственных) электромагнитных колебаний в контуре.

Период свободных электромагнитных колебаний в LC -контуре определяется по формуле Томсона:

\(T=2\pi \cdot \sqrt{L\cdot C}, \;\;\; \omega =\dfrac{1}{\sqrt{L\cdot C}}.\)

Сточки зрения механической аналогии, идеальному колебательному контурусоответствует пружинный маятник без трения, а реальному - с трением. Вследствиедействия сил трения колебания пружинного маятника затухают с течением времени.

*Вывод формулы Томсона

Поскольку полная энергия идеального LC -контура, равная сумме энергий электростатического поля конденсатора и магнитного поля катушки, сохраняется, то в любой момент времени справедливо равенство

\(W=\dfrac{Q_{m}^{2} }{2C} =\dfrac{L\cdot I_{m}^{2} }{2} =\dfrac{q^{2} }{2C} +\dfrac{L\cdot i^{2} }{2} ={\rm const}.\)

Получим уравнение колебаний в LC -контуре, используя закон сохранения энергии. Продифференцировав выражение для его полной энергии по времени, с учетом того, что

\(W"=0, \;\;\; q"=i, \;\;\; i"=q"",\)

получаем уравнение, описывающее свободные колебания в идеальном контуре:

\(\left(\dfrac{q^{2} }{2C} +\dfrac{L\cdot i^{2} }{2} \right)^{{"} } =\dfrac{q}{C} \cdot q"+L\cdot i\cdot i" = \dfrac{q}{C} \cdot q"+L\cdot q"\cdot q""=0,\)

\(\dfrac{q}{C} +L\cdot q""=0,\; \; \; \; q""+\dfrac{1}{L\cdot C} \cdot q=0.\)

Переписав его в виде:

\(q""+\omega ^{2} \cdot q=0,\)

замечаем, что это - уравнение гармонических колебаний с циклической частотой

\(\omega =\dfrac{1}{\sqrt{L\cdot C} }.\)

Соответственно период рассматриваемых колебаний

\(T=\dfrac{2\pi }{\omega } =2\pi \cdot \sqrt{L\cdot C}.\)

Литература

  1. Жилко, В.В. Физика: учеб. пособие для 11 класса общеобразоват. шк. с рус. яз. обучения / В.В. Жилко, Л.Г. Маркович. - Минск: Нар. Асвета, 2009. - С. 39-43.
В продолжение темы:
Разное

Имеем : ZTE Blade; надоевшую, старую, глючную (нужное подчеркнуть) прошивку на нем; немного времени; чуток серого вещества; каплю денег (для погружения в дзэн). Задача :...

Новые статьи
/
Популярные