Чем определяется точность измерения прибором. Определение точности прибора. Используйте правильные термины

Измеряемые величины не могут быть определены абсолютно достоверно. Измерительные инструменты и системы всегда имеют некоторое допустимое отклонение и помехи, которые выражаются степенью неточности. К тому же, необходимо учитывать и особенности конкретных приборов.

В отношении неточности измерений часто используются следующие термины:

  • Погрешность - ошибка между истинным и измеренным значением
  • Точность — случайный разброс измеренных значений вокруг их среднего
  • Разрешение — наименьшая различаемая величина измеренного значения

Часто эти термины путаются. Поэтому здесь я хотел бы подробно рассмотреть вышеуказанные понятия.

Неточность измерения

Неточности измерения могут быть разделены на систематические и случайные измерительные ошибки. Систематические ошибки вызваны отклонениями при усилении и настройкой «нуля» измерительного оборудования. Случайные ошибки вызваны шумом и и/или токами.

Часто понятия погрешность и точность рассматриваются как синонимы. Однако, эти термины имеют совершенно различные значения. Погрешность показывает, насколько близко измеренное значение к его реальной величине, то есть отклонение между измеренным и фактическим значением. Точность относится к случайному разбросу измеряемых величин.

Когда мы проводим некоторое число измерений до момента стабилизации напряжения или же какого-то другого параметра, то в измеренных значениях будет наблюдаться некоторая вариация. Это вызвано тепловым шумом в измерительной цепи измерительного оборудования и измерительной установки. Ниже, на левом графике показаны эти изменения.

Определения неопределенностей. Слева — серия измерений. Справа — значения в виде гистограммы.

Гистограмма

Измеренные значения могут быть изображены в виде гистограммы, как показано справа на рисунке. Гистограмма показывает, как часто наблюдается измеренное значение. Самая высокая точка на гистограмме, это чаще всего наблюдаемое измеренное значение, в случае симметричного распределения равно среднему значению (изображено синей линии на обоих графиках). Черная линия представляет истинное значение параметра. Разница между средним измеренной величины и истинным значением и является погрешностью. Ширина гистограммы показывает разброс отдельных измерений. Этот разброс измерений называется точностью.

Используйте правильные термины

Погрешность и точность, таким образом, имеют различные значения. Поэтому вполне возможно, что измерение является очень точным, но имеющим погрешность. Или наоборот, с малой погрешностью, но не точное. В общем, измерение считается достоверным, если оно точное, и с малой погрешностью.

Погрешность

Погрешность является индикатором корректности измерения. Из-за того, что в одном измерении точность оказывает влияние на погрешность, то учитывается среднее серии измерений.

Погрешность измерительного прибора обычно задается двумя значениями: погрешностью показания и погрешностью по всей шкале. Эти две характеристики вместе определяют общую погрешность измерения. Эти значения погрешности измерения указываются в процентах или в ppm (parts per million , частей на миллион) относительно действуюшего национального стандарта. 1% соответствует 10000 ppm .

Погрешность приводится для указанных температурных диапазонов и для определенного периода времени после калибровки. Обратите внимание, что в разных диапазонах, возможны, и различные погрешности.

Погрешность показаний

Указание процентного отклонения без дополнительной спецификации также относится к показанию. Допустимые отклонения делителей напряжения, точность усиления и абсолютные отклонения при считывании и оцифровке являются причинами этой погрешности.

Неточность показаний в 5% для значения 70 В

Вольтметр, который показывает 70.00 В и имеет спецификацию «± 5% от показаний», будет обладать погрешностью в ±3.5 В (5% от 70 В). Фактическое напряжение будет лежать между 66.5 и 73.5 вольтами.

Погрешность по всей шкале

Этот тип погрешности обусловлен ошибками смещения и ошибками линейности усилителей. Для приборов, которые оцифровывают сигналы, присутствует нелинейность преобразования и погрешности АЦП. Эта характеристика относится ко всему используемому диапазону измерений.

Вольтметр может иметь характеристику «3% шкалы». Если во время измерения выбран диапазон 100 В (равный полной шкале), то погрешность составляет 3% от 100 В = 3 В независимо от измеренного напряжения. Если показание в этом диапазоне 70 В, то реальное напряжение лежит между 67 и 73 вольтами.

Погрешность 3% шкалы в диапазоне 100 В

Из приведенного выше рисунка ясно, что этот тип допустимых отклонений не зависит от показаний. При показании 0 В реальное напряжение лежит между -3 и 3 вольтами.

Погрешность шкалы в цифрах

Часто для цифровых мультиметров приводится погрешность шкалы в разрядах вместо процентного значения.

У цифрового мультиметра с 3½ разрядным дисплеем (диапазон от -1999 до 1999), в спецификации может быть указано «+ 2 цифры». Это означает, что погрешность показания 2 единицы. Например: если выбирается диапазон 20 вольт (± 19.99), то погрешность шкалы составляет ±0.02 В. На дисплее отображается значение 10.00, а фактическое значение будет между 9.98 и 10.02 вольтами.

Вычисление погрешности измерения

Спецификации допустимых отклонений показания и шкалы вместе определяют полную погрешность измерения прибора. Ниже при расчете используются те же значения, что и в приведенных выше примерах:

Точность: ±5% показания (3% шкалы)

Диапазон: 100 В

Показание: 70 В

Полная погрешность измерения вычисляется следующим образом:

В этом случае, полная погрешность ±6.5В. Истинное значение лежит между 63.5 и 76.5 вольтами. На рисунке ниже это показано графически.

Полная неточность для неточностей показания 5% и 3% шкалы для диапазона 100 В и показания 70 В

Процентная погрешность - это отношение погрешности к показанию. Для нашего случая:

Цифры

Цифровые мультиметры могут иметь спецификацию «± 2.0% показания, + 4 цифры». Это означает, что 4 цифры должны быть добавлены к 2% погрешности показания. В качестве примера снова рассмотрим 3½ разрядный цифровой индикатор. Он показывает 5.00 В для выбранного диапазона 20 В. 2% показания будет означать погрешность в 0,1 В. Добавьте к этому численную погрешность (= 0,04 В). Общая погрешность, следовательно, 0,14 В. Истинное значение должно быть в диапазоне между 4.86 и 5,14 вольтами.

Суммарная погрешность

Зачастую в расчет принимается только погрешность измерительного прибора. Но также, дополнительно следует принимать во внимание погрешности измерительных инструментов, в том случае, если они используются. Вот несколько примеров:

Увеличение погрешности при использовании пробника 1:10

Если в процессе измерений используется щуп 1:10, то необходимо учитывать не только измерительную погрешность прибора. На погрешность также влияет входной импеданс используемого прибора и сопротивление щупа, которые вместе составляют делитель напряжения.

На рисунке выше схематически показан с подключенным к нему пробником 1:1. Если мы рассмотрим этот пробник как идеальный (нет сопротивления соединения), то приложенное напряжение передается прямо на вход осциллографа. Погрешность измерения теперь определяется только допустимыми отклонениями аттенюатора, усилителя и цепями, принимающими участие в дальнейшей обработке сигнала и задается производителем прибора. (На погрешность также влияет сопротивление соединения, которое формирует внутреннее сопротивление . Оно включается в заданные допустимые отклонения).

На рисунке ниже показан тот же самый осциллограф, но теперь ко входу подключен щуп 1:10. Этот пробник имеет внутреннее сопротивление соединения и вместе со входным сопротивлением осциллографа образует делитель напряжения. Допустимое отклонение резисторов в делителе напряжения является причиной его собственной погрешности.

Пробник 1:10, подключенный к осциллографу, вносит дополнительную погрешность

Допустимое отклонение входного сопротивления осциллографа может быть найдено в его спецификации. Допустимое отклонение сопротивления соединения щупа не всегда дано. Тем не менее, погрешность системы заявляется производителем определенного осциллографического пробника для конкретного типа осциллографа. Если щуп используется с другим типом осциллографа, нежели рекомендуемый, то измерительная погрешность становится неопределенной. Этого нужно всегда стараться избегать.

Предположим, что осциллограф имеет допустимое отклонение 1.5% и используется щуп 1:10 с погрешностью в системе 2.5%. Эти две характеристики можно перемножить для получения полной погрешности показания прибора:

Здесь — полная погрешность измерительной системы, — погрешность показания прибора, — погрешность щупа, подключенного к осциллографу, подходящего типа.

Измерения с шунтирующим резистором

Часто при измерениях токов используют внешний шунтирующий резистор. Шунт имеет некоторое допустимое отклонение, которое влияет на измерение.

Заданное допустимое отклонение шунтирующего резистора влияет на погрешность показания. Для нахождения полной погрешности, допустимое отклонение шунта и погрешность показаний измерительного прибора перемножаются:

В этом примере, полная погрешность показания равна 3.53%.

Сопротивление шунта зависит от температуры. Значение сопротивления определяется для данной температуры. Температурную зависимость часто выражают в .

Для примера вычислим значение сопротивления для температуры окружающей среды . Шунт имеет характеристики: Ом (соответственно и ) и температурную зависимость .

Ток, протекающий через шунт является причиной рассеяния энергии на шунте, что приводит к росту температуры и, следовательно, к изменению значения сопротивления. Изменение значения сопротивления при протекании тока зависит от нескольких факторов. Для проведения очень точного измерения, необходимо откалибровать шунт на дрейф сопротивления и условия окружающей среды при которых проводятся измерения.

Точность

Термин точность используется для выражения случайности измерительной ошибки. Случайная природа отклонений измеряемых значений в большинстве случае имеет тепловую природу. Из-за случайной природы этого шума не возможно получить абсолютную ошибку. Точность дается только вероятностью того, что измеряемая величина лежит в некоторых пределах.

Распределение Гаусса

Тепловой шум имеет гауссово, или, как еще говорят, нормальное распределение . Оно описывается следующим выражением:

Здесь — среднее значение, показывает дисперсию и соответствует шумового сигнала. Функция дает кривую распределения вероятностей, как показано на рисунке ниже, где среднее значение и эффективная амплитуда шума .

и

В таблице указаны шансы получения значений в заданных пределах.

Как видно, вероятность того, что измеренное значение лежит в диапазоне ± равна .

Повышение точности

Точность может быть улучшена передискретизацией (изменением частоты дискретизации) или фильтрацией. Отдельные измерения усредняются, поэтому шум значительно снижается. Также снижается разброс измеренных значений. Используя передискретизацию или фильтрацию необходимо учитывать, что это может привести к снижению пропускной способности.

Разрешение

Разрешением, или, как еще говорят, разрешающей способностью измерительной системы является наименьшая различимая измеряемая величина. Определение разрешения прибора не относится к точности измерения.

Цифровые измерительные системы

Цифровая система преобразует аналоговый сигнал в цифровой эквивалент посредством аналого-цифрового преобразователя. Разница между двумя значениями, то есть разрешение, всегда равно одному биту. Или, в случае с цифровым мультиметром, это одна цифра.

Возможно также выразить разрешение через другие единицы, а не биты. В качестве примера рассмотрим , имеющий 8-битный АЦП. Чувствительность по вертикали установлена в 100 мВ/дел и число делений равно 8, полный диапазон, таким образом, равен 800 мВ . 8 бит представляются 2 8 =256 различными значениями. Разрешение в вольтах тогда равно 800 мВ / 256 = 3125 мВ .

Аналоговые измерительные системы

В случае аналогового прибора, где измеряемая величина отображается механическим способом, как в стрелочном приборе, сложно получить точное число для разрешения. Во-первых, разрешение ограничено механическим гистерезисом, причиной которого является трение механизма стрелки. С другой стороны, разрешение определяется наблюдателем, делающем свою субъективную оценку.

Инструкция

Класс точности прибора обычно указывается на шкале. Он указывается и в инструкции, которая прилагается к прибору. Посмотрите, символами он обозначен. Это могут быть прописные латинские , или арабские цифры. В последнем случае добавляется какой-либо дополнительный .

Если точности обозначен латинской маркировкой, это означает, что определяется он по абсолютной погрешности. Арабские цифры без дополнительных значков свидетельствуют о том, что определяющей является приведенная погрешность, при этом учитывается максимальное или минимальное значение возможного измерения. Дополнительным значком может быть, например, галочка. В этом случае также определение класса идет по приведенной погрешности, однако на основании длины шкалы. При определении класс по относительной погрешности проставляются римские цифры.

Прибор может не иметь никакой маркировки. Это значит, что погрешность может составлять более 4%, то есть пользоваться им можно только для очень приблизительных измерений. В этом случае размер погрешности установите сами. Он приблизительно равен половине цены деления. При этом результат измерения может быть как больше истинного на размер погрешности, так и меньше. Маркировка должна соответствовать государственным стандартам.

Вычислите погрешность. Класс точности определяется как отношение той или иной погрешности к точному значению. Например, абсолютную можно представить в виде разности между точным и приблизительным значениями х и а, то есть в виде формулы s=(x-a) Относительная определяется как отношение этой же разнице к величине а, а приведенная – к длине шкалы l. Умножьте полученный результат на 100%.

Существует восемь классов точности стрелочных приборов. Они определяются по приведенной погрешности. Делятся они на прецизионные и технические. Первые применяются для точных измерений – например, в лабораториях. Диапазон погрешностей у этих классов – от 0,05 до 0,5.Приборы, относящиеся ко второй категории, Они могут давать погрешность от 1,0 до 4, 0. При этом по всей длине шкалы расхождение между данными измерения и фактическим значением одно и то же.

Видео по теме

Обратите внимание

Методы измерений на точность не влияют. Разумеется, каждым прибором необходимо пользоваться в соответствии с его назначением и инструкцией. Условия для измерения объекта должны соответствовать установленным стандартам – например, принятым показателям температуры и влажности.

Источники:

  • класс точности измерительного прибора

Классы точности представляют собой характеристику измерительных средств, которая необходима для проверки их соответствия государственным стандартам. В классах точности предусматриваются любые погрешности или изменения параметров, способные хоть так-то повлиять на точность прибора. Классы точности описывают пределы допустимых в рамках стандарта отклонений от эталонного размера или значения. Оперирование классами точности в значительной степени облегчает проверку измерительных средств на соответствие стандартам.

Инструкция

Ввиду разнообразия величин и средств измерения, предложить какой-то единый способ индексировать допустимые погрешности представляется . Чаще всего точности обозначают числом, равным допустимой погрешности, которое выражается в соотношении к реальному значению величины.

Найдите в справочной литературе или в интернете сводные таблицы с полным описанием рассматриваемого вами прибора, а лучше семейства приборов. Найдите все основные технические характеристики и параметры, потому что, измеряя все вручную, вы рискуете допустить неточность уже на этом этапе. В результате, все неточности непременно скажутся на конечной погрешности, а, соответственно, и определении класса точности прибора.

Приступая к измерениям, необходимо прежде всего подобрать приборы с учетом их пределов измерений. Пределы измерения - это минимальное (нижний предел) и максимальное (верхний предел) значения шкалы прибора . Чаще всего предел измерения один, но может быть два. Например, линейка (рис. 37) имеет один предел (верхний). Он равен 25 см. У термометра (рис. 38) два предела: верхний предел измерения температуры равен +50 °С; нижний предел измерения - -40 °С.

Рис. 37

Рис. 38

На рисунке 39 изображены три линейки с одинаковыми верхними пределами (25 см). Но эти линейки измеряют длину с различной точностью. Наиболее точные результаты измерений дает линейка 1, менее точные - линейка 3. Что же такое точность измерений и от чего она зависит? Для ответа на эти вопросы рассмотрим сначала цену деления шкалы прибора.

Рис. 39

Цена деления - это значение наименьшего деления шкалы прибора .

Чтобы определить цену деления шкалы, необходимо:

    выбрать два соседних значения, например 3 см и 4 см, на шкале линейки (см. рис. 39); подсчитать число делений (не штрихов!) между этими значениями; на линейке 1 (см. рис. 39) число делений между значениями 3 см и 4 см равно 10; вычесть из большего значения меньшее (4 см - 3 см = 1 см) и полученный результат разделить на число делений.

Полученное значение и будет ценой деления шкалы прибора. Обозначим ее буквой С.

Для линейки 1:

C 1 = 1 см: 10 дел = 0,1 см/дел

Для линейки 2:

C 2 = 1 см: 5 дел = 0,2 см/дел

Для линейки 3:

C 3 = 1 см: 2 дел = 0,5 см/дел

Точно так же можно определить и цену деления шкалы мензурок 1 и 2 (рис. 40). Цена деления шкалы мензурки 1:

Цена деления шкалы мензурки 2:

Рис. 40

Измерим один и тот же объем мензуркой 1 и мензуркой 2. Исходя из показаний шкалы объем воды в мензурке 1:

V = 35 мл .

Из показаний шкалы мензурки 2:

V = 37 мл .

Понятно, что точнее измерен объем воды мензуркой 2, цена де- ления которой меньше (1 мл/дел < 5 мл/дел). Значит, чем меньше цена деления шкалы, тем точнее можно измерять данным прибором . В этом случае говорят: мензуркой 1 мы измерили объем с точностью до 5 мл (сравните с ценой деления шкалы С1 = 5 мл/дел), мензуркой 2 - с точностью до 1 мл (сравните с ценой деления С2 = 1 мл/дел).

Итак, любым прибором, имеющим шкалу, измерить физическую величину можно с точностью, не превышающей цены деления шкалы.

Линейкой 1 (см. рис. 39) можно измерить длину с точностью до 1 мм. Точность измерения длины линейками 2 и 3 определите само- стоятельно.

Подумайте и ответьте

  1. Что называют ценой деления?
  2. Как определить цену деления шкалы прибора?
  3. От чего зависит точность измерения данным прибором?
  4. На рисунке 41 изображены измерительные приборы. Как они называются? Какие физические величины они измеряют? Какова цена деления шкалы каждого из них?
  5. Определите показания шкалы каждого из приборов (см. рис. 41).
  6. С какой точностью измеряют физические величины данными приборами?
  7. Определите верхний и нижний пределы измерения данными приборами. Можно ли данный термометр использовать для измерения температуры наружного воздуха зимой на Северном полюсе? Почему?
  8. На каких видах транспорта можно использовать данный спидометр (см. рис. 41): на самолете, автомобиле, велосипеде? Почему?

Рис. 41

Интересно знать!

В истории науки есть немало случаев, когда повышение точности измерений давало толчок к новым открытиям. Так, оценить расстояния до звезд и создать точные каталоги их положения астрономы смогли благодаря повышению точности измерения положения ярких звезд на небе. Более точные измерения плотности азота, выделенного из воздуха, позволили в 1894 г. открыть новый инертный газ - аргон. Повышение точности измерений плотности воды привело к открытию в 1932 г. тяжелого изотопа водорода - дейтерия. Позже дейтерий стал одной из составляющих ядерного горючего.

Сделайте дома сами

Имея пластиковую бутылку и мерный стакан, изготовьте мензурку. Определите цену деления, точность измерения изготовленной вами мензуркой. Для изготовления шкалы используйте узкий лейкопластырь. Примите участие в конкурсе на «Лучшую мензурку класса».

Упражнения

Рис. 42

Точность измерительного прибора – это его свойство, характеризующее степень приближения показаний данного измерительного прибора к действительным значениям измеряемой величины и определяется той наименьшей величиной, которую с помощью этого прибора можно определить надёжно.

Точность прибора зависит от цены наименьшего деления его шкалы и указывается или на самом приборе, или в заводской инструкции (паспорте). Заметим, что точность измерений обратно пропорциональна относительной погрешности измерений Е: = .

Погрешность электроизмерительных приборов определяется классом точности (или приведенной погрешностью Е пр), который указывается на лицевой стороне прибора соответствующей цифрой в кружке. Классом точности прибора К называют выраженное в процентах отношение абсолютной погрешности к предельному (номинальному) значению х пр измеряемой величины, т. е. к наибольшему её значению, которое может быть измерено по шкале прибора (предел измерения):

.

Зная класс точности и предел измерения прибора, можно рассчитать его абсолютную погрешность:

Эта погрешность одинакова для любого измерения сделанного с помощью данного прибора. Классов точности семь: 0,1; 0,2; 0,5; 1,0; 1,5; 2,5; 4,0. Приборы первых трех классов точности (0,1; 0,2; 0,5) называются прецизионными и используются при точных научных измерениях, приборы остальных классов точности называются техническими . Приборы без указания класса точности считаются внеклассными.

Пример . Сила тока измеряется в цепи амперметром, класс точности которого К=0,5, а шкала имеет предел измерения I пр =10 А. Находим абсолютную погрешность амперметра:

Отсюда следует, что амперметр позволяет измерять силу тока с точностью не более 0,05 А, и поэтому нецелесообразно делать отсчёт по шкале прибора с большей точностью.

Допустим, что с помощью данного амперметра были измерены три значения силы тока: I 1 =2 А; I 2 =5 А; I 3 =8 А. Находим для каждого случая относительную погрешность: ; .

Из этого примера следует, что в третьем случае относительная погрешность самая маленькая, то есть чем больше величина отсчёта по прибору, тем меньше относительная погрешность измерения. Вот почему для оптимального использования приборов рекомендуется их подбирать так, чтобы значение измеряемой величины находилось в конце шкалы прибора. В этом случае относительная погрешность приближается к классу точности прибора. Если точность прибора неизвестна, то абсолютная погрешность принимается равной половине цены наименьшего деления (линейка, термометр, секундомер). Для штангенциркуля и микрометра – точность их нониусов (0,1 мм, 0,01 мм).

Примечания: 1) При отсчетах следует следить за тем, чтобы луч зрения был перпендикулярен шкале. Для устранения так называемой ошибки параллакса на многих приборах устанавливается зеркало («зеркальные приборы»). Глаз экспериментатора расположен правильно, если стрелка прибора закрывает свое изображение в зеркале.

2) При косвенных измерениях (например, определение объема цилиндра по его диаметру и высоте) следует определять все измеряемые вершины с приблизительно одинаковой относительной точностью.

3) При обработке результатов измерений следует помнить, что точность вычислений должна быть согласована с точностью самих измерений. Вычисления, произведенные с большим, чем это необходимо, числом десятичных знаков, приводят к большому объему ненужной работы. Например, если хотя бы одна из величин в каком-либо выражении определена с точностью до двух значащих цифр, то нет смысла вычислять результат с точностью, большей двух значащих цифр. В тоже время в промежуточных расчетах рекомендуется сохранять одну лишнюю цифру, которая в дальнейшем – при записи окончательного результата – будет отброшена. В теории погрешностей из существующих правил округления имеется следующее исключение: при округлении погрешностей последняя сохраняемая цифра увеличивается на единицу, если старшая отбрасываемая цифра 3 или больше 3.

Точность измерения - это степень приближения результатов из­мерения к некоторому действительному значению физической величины. Чем меньше точность, тем больше погрешность изме­рения и, соответственно, чем меньше погрешность, тем выше точность.

Даже самые точные приборы не могут показать действитель­ного значения измеряемой величины. Обязательно существует погрешность измерения, причинами которой могут быть различ­ные факторы.

Погрешности могут быть:

систематические, например, если тензосопротивление плохо наклеено на упругий элемент, то деформация его решетки не будет соответствовать деформации упругого элемента и датчик будет постоянно неправильно реагиро­вать;

случайные, вызванные, например, неправильным функцио­нированием механических или электрических элементов измерительного устройства;

грубые, как правило, допускаются самим исполнителем, ко­торый из-за неопытности или усталости неправильно счи­тывает показания прибора или ошибается при обработке информации. Их причиной могут стать и неисправность средств измерений, и резкое изменение условий измерения.

Полностью исключить погрешности практически невозмож­но, а вот установить пределы возможных погрешностей измере­ния и, следовательно, точность их выполнения необходимо

Классификация и метрологические характеристики средств измерений

Средства измерений, утвержденные Госстандартом России, ре­гистрируются в государственном Реестре средств измерений, удостоверяются сертификатами соответствия и только после это­го допускаются для применения на территории Российской Фе­дерации.

В справочных изданиях принята следующая структура описания средств измерений: регистрационный номер, наименование, номер и срок действия сертификата об утверждении типа средства измерения, местонахождение изготовителя и основные метрологические характеристики. Последние оценивают пригодность средств измерений к измерениям в известном диапазоне с известной точностью.

Метрологические характеристики средств измерений обеспечивают:

Возможность установления точности измерений;

Достижение взаимозаменяемости и сравнение средств из­мерений между собой;

Выбор нужных средств измерений по точности и другим характеристикам;

Определение погрешностей измерительных систем и установок;

Оценку технического состояния средств измерений при их поверке.

Метрологические характеристики, установленные документами, считаются действительными. На практике наиболее распространены следующие метрологические характеристики средств измерений:

диапазон измерений - область значений измеряемой величины, для которой нормированы допускаемые пределы погрешности СИ;



предел измерения - наибольшее или наименьшее значение диапазона измерения. Для мер - это номинальное значе­ние воспроизводимой величины.

Шкала измерительного прибора - градуированная совокупность отметок и цифр на отсчетном устройстве средства измерения, соответствующих ряду последовательных значений измеряемой величины

Цена деления шкалы - разность значений величин, соответ­ствующих двум соседним отметкам шкалы. Приборы с равно­мерной шкалой имеют постоянную цену деления, а с неравно­мерной - переменную. В этом случае нормируется минималь­ная цена деления.

Основная нормируемая метрологическая характеристика средств измерений - это погрешность, т. е. разность между по­казаниями средств измерений и истинными (действительными) значениями физических величин.

Все погрешности в зависимости от внешних условий делятся на основные и дополнительные.

Основная погрешность - это погрешность при нормальных условиях эксплуатации.

На практике, когда имеется более широкий диапазон влияющих величин, нормируется и дополнительная погрешность средств измерений.

В качестве предела допускаемой погрешности выступаетнаибольшая погрешность, вызываемая изменением влияющей величины, при которой средство измерения по техническим требованиям может быть допущено к применению.

Класс точности - это обобщенная метрологическая характе­ристика, определяющая различные свойства средства измерения. Например, у показывающих электроизмерительных прибо­ров класс точности помимо основной погрешности включает в себя также вариацию показаний, а у мер электрических вели­чин - величину нестабильности (процентное изменение значе­ния меры в течение года).

Класс точности средства измерения уже включает системати­ческую и случайную погрешности. Однако он не является непо­средственной характеристикой точности измерений, выполняе­мых с помощью этих СИ, поскольку точность измерения зави­сит и от методики измерения, взаимодействия СИ с объектом, условий измерения и т. д.

В продолжение темы:
Программы

Основная память (ОП) - предназначена для хранения и оперативного обмена информацией со всеми блоками машины. ОП содержит два вида запоминающих устройств: постоянное...