Резонанс напряжений в электрической цепи и его последствия. Резонанс в последовательной цепи (резонанс напряжений) Как обнаружить в цепи режим резонанса напряжений

Колебательный контур - электрическая цепь, в которой могут возникать колебания с частотой, определяемой параметрами цепи.

Простейший колебательный контур состоит из конденсатора и катушки индуктивности, соединенных параллельно или последовательно.

Конденсатор C – реактивный элемент. Обладает способностью накапливать и отдавать электрическую энергию.
- Катушка индуктивности L – реактивный элемент. Обладает способностью накапливать и отдавать магнитную энергию.

Свободные электрические колебания в параллельном контуре.

Основные свойства индуктивности:

Ток, протекающий в катушке индуктивности, создаёт магнитное поле с энергией .
- Изменение тока в катушке вызывает изменение магнитного потока в её витках, создавая в них ЭДС, препятствующую изменению тока и магнитного потока.

Период свободных колебаний контура LC можно описать следующим образом:

Если конденсатор ёмкостью C заряжен до напряжения U , потенциальная энергия его заряда составит.
Если параллельно заряженному конденсатору подключить катушку индуктивности L , в цепи пойдёт ток его разряда, создавая магнитное поле в катушке.

Магнитный поток, увеличиваясь от нуля, создаст ЭДС в направлении противоположном току в катушке, что будет препятствовать нарастанию тока в цепи, поэтому конденсатор разрядится не мгновенно, а через время t 1 , которое определяется индуктивностью катушки и ёмкостью конденсатора из расчёта t 1 = .
По истечении времени t 1 , когда конденсатор разрядится до нуля, ток в катушке и магнитная энергия будут максимальны.
Накопленная катушкой магнитная энергия в этот момент составит.
В идеальном рассмотрении, при полном отсутствии потерь в контуре, E C будет равна E L . Таким образом, электрическая энергия конденсатора перейдёт в магнитную энергию катушки.

Изменение (уменьшение) магнитного потока накопленной энергии катушки создаст в ней ЭДС, которая продолжит ток в том же направлении и начнётся процесс заряда конденсатора индукционным током. Уменьшаясь от максимума до нуля в течении времени t 2 = t 1 , он перезарядит конденсатор от нуля до максимального отрицательного значения (-U ).
Так магнитная энергия катушки перейдёт в электрическую энергию конденсатора.

Описанные интервалы t 1 и t 2 составят половину периода полного колебания в контуре.
Во второй половине процессы аналогичны, только конденсатор будет разряжаться от отрицательного значения, а ток и магнитный поток сменят направление. Магнитная энергия вновь будет накапливаться в катушке в течении времени t 3 , сменив полярность полюсов.

В течении заключительного этапа колебания (t 4), накопленная магнитная энергия катушки зарядит конденсатор до первоначального значения U (в случае отсутствия потерь) и процесс колебания повторится.

В реальности, при наличии потерь энергии на активном сопротивлении проводников, фазовых и магнитных потерь, колебания будут затухающими по амплитуде.
Время t 1 + t 2 + t 3 + t 4 составит период колебаний .
Частота свободных колебаний контура ƒ = 1 / T

Частота свободных колебаний является частотой резонанса контура, на которой реактивное сопротивление индуктивности X L =2πfL равно реактивному сопротивлению ёмкости X C =1/(2πfC) .

Расчёт частоты резонанса LC -контура:

Предлагается простой онлайн-калькулятор для расчёта резонансной частоты колебательного контура.

Коэффициент мощности cosφ при резонансе напряжений равен единице.

2. Условие, признак и применение резонанса напряжений. В каком случае резонанс напряжений вреден? Почему?

Режим, при котором в цепи с последовательным соединением индуктивного и емкостного элемента напряжение на входе совпадает по фазе с током, резонанс напряжения.

внезапное возникновение резонансного режима в цепях большой мощности может вызывать аварийные ситуацию, привести к пробою изоляции проводов и кабелей и создать опасность для персонала.

3. Какими способами можно достичь резонанса напряжений?

При подключении колебательного контура, состоящего из катушки индуктивности и конденсатора, к источнику энергии могут возникнуть резонансное явление. Возможны два основных типа резонанса: при последовательном соединение катушки и конденсатора- резонанс напряжений, при их параллельном соединении- резонансов токов.

4. Почему при резонансе напряжений U 2 >U 1 ?

Где R – активное сопротивление

I – сила тока

XL – индуктивное сопротивление катушки

XC – емкостное сопротивление конденсатора

Z – полное сопротивление переменного тока

При резонансе: UL = UС,

Где UС – напряжение катушки,

UL – напряжение конденсатора

Напряжение можно найти:

U=UR+UL+UC =>U=UR,

Где UR – напряжение катушки, к которой подключен вольтметр V2, значит напряжение V2=V1

5. Какова особенность резонанса напряжений? Объяснить ее.

Следовательно, режим резонанса может быть достигнут изменением индуктивности катушки L, емкости конденсата С или частоты входного напряжения ω.

6. Записать выражение закона Ома через проводимости для цепи с параллельным соединением конденсатора и индуктивной катушки. Чему равна полная проводимость?

Закон Ома через проводимости для цепи переменного тока с параллельным соединение ветвей.

7. Условие, признак и применение резонанса токов.

т.е равенство индуктивной и емкостной проводимостей.

8 . Какими способами можно достичь резонанса токов?

Режим, при котором в цепи, содержащей параллельное ветви с индуктивным и емкостным элементами, ток неразветвленного участка цепи совпадает по фазе с напряжением, резонансом токов.

9. Почему при резонансе токов I 2 > I 1 ?

Потому что, исходя из векторной диаграммы токов при резонансе график будет представлять собой прямоугольный треугольник, где токи I и I 1 будут являться катетами, а ток I 2 – гипотенузой. Следовательно, и I 2 будет больше чем I 1 .

10. Какова особенность резонанса токов? Объяснить ее.

При резонансе токов токи в ветвях значительно больше тока неразветвленной части цепи. Это свойство-усилие тока- является важнейшей особенностью резонанса токов.

11. Объяснить построение векторных диаграмм.

Целью ее построения является определение активной и реактивной составляющих напряжения на катушке и угла сдвига фаз между напряжением на входе цепи и током

Расчеты

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

    Электротехника и электроника. Кн. 1. Электрические и магнитные цепи. - B 3-х кн.: кн.1 /В. Г. Герасимов и др.; Под ред. В. Г. Герасимова. М.: Энергоатомиздат, 1996. – 288 с.

    Касаткин А. С., Немцов М. В. Электротехника. М.: Высш. шк., 1999. – 542 с.

    Электротехника /Под ред. Ю. Л. Хотунцева. М.: АГАР, 1998. – 332с.

    Борисов Ю. М., Липатов Д. Н., Зорин Ю. Н. Электротехника. Энергоатомиздат, 1985. – 550 с.

    ГОСТ 19880-74. Электротехника. Основные понятия. Термины и определения. М.: Издательство стандартов, 1974.

Переменная ЭДС. Она изменяется по закону:

Рисунок 1.

В цепи течет ток вида:

Амплитуда силы тока${\ (I}_m)$ связана с амплитудой ${{\mathcal E}}_m$ «законом Ома» для переменного тока:

Выражение:

полное электросопротивление. Угол ($\varphi $) на который колебания тока отстают от колебаний напряжения определен выражением:

Если изменить частоту колебаний ($\omega $). Как следует из формул (3) , (5) произойдёт изменение амплитуды силы тока ($I_m$) и сдвига фаз ($\varphi $).

Если $\omega =0$, то выражение $\frac{1}{\omega C}\to \infty $. Импеданс ($Z$) становится бесконечным, следовательно, $I_m=0.$ При $\omega =0$ мы имеем дело с постоянным током, который не проходит через конденсатор. Если начать увеличивать частоту, то величина реактивного сопротивления (${\left(\omega L-\frac{1}{\omega C}\right)}^2$) сначала уменьшается, следовательно, уменьшается импеданс, увеличивается $I_m.$ Когда частота ($\omega $) становится равной резонансной частоте контура (${\omega }_0$):

полное сопротивление цепи ($Z$) становится минимальным и равным активному сопротивлению цепи ($R$). Сила тока при этом достигает максимума. При $\omega >{\omega }_0$ выражение ${\left(\omega L-\frac{1}{\omega C}\right)}^2\ne 0$ и растет при росте частоты. Импеданс вновь увеличивается, амплитуда силы тока уменьшается, приближаясь к нулю асимптотически.

Графически вышеописанный процесс изображен на рис.2.

Рисунок 2.

Амплитуда силы тока при резонансной частоте ($\omega ={\omega }_0$) равна:

при этом разность фаз равна нулю ($\varphi =0$). В цепи как бы нет емкости и индуктивности. При этой частоте напряжения на емкости и индуктивности полностью взаимно компенсируются, становясь равными по модулю, так как они по фазе противоположны всегда. Такой резонанс называют резонансом напряжений. Векторная схема резонанса напряжений изображена на рис.3. При резонансе контур ведет себя как активное сопротивление.

Рисунок 3.

Замечание

Итак, случай вынужденных колебаний, когда частота генератора ЭДС (или приложенного внешнего напряжения) равна резонансной частоте, представляет особый интерес. При этом амплитуда тока достигает максимума, а сдвиг фаз между током и напряжением равен нулю. Контур действует как активное сопротивление.

Применение резонанса напряжений

Явление резонанса напряжений используют в радиотехнике, если необходимо усилить колебания напряжения какой либо частоты, например в устройствах входной части радиоприемника. В этой части есть колебательный контур ($LC$). Добротность этого контура высока, напряжение с конденсатора контура подается на вход усилителя. Входные сигналы вызывают в антенне переменный ток довольно высокой частоты, который вызывает в катушке $L$ ЭДС взаимной индукции, амплитуда которой ${{\mathcal E}}_m\ \ $. Из-за резонанса на конденсаторе (значит и на входе) появляется напряжение с амплитудой ${{\mathcal E}}_mO>{{\mathcal E}}_m.$ Это усиление работает только в узком интервале частот, около резонансной частоты, что позволит выделить из большого количества сигналов разных радиостанций только колебания нужной частоты.

Пример 1

Задание: Чему равна амплитуда напряжения на конденсаторе ($U_{mC}$) при резонансе напряжений, если колебания затухают слабо? Добротность контура равна$\ O$. Внешняя ЭДС изменяется в соответствии с законом: ${\mathcal E}={{\mathcal E}}_m{sin \left(\omega t\right)\ }.$

Решение:

Амплитуда тока при резонансе достигает максимума, она равна:

где ${\omega }_0$ -- резонансная частота.

Следовательно, амплитуда напряжения на конденсаторе будет равна:

где емкостное сопротивление равно:

Подставим в формулу (1.2) $X_C$ из (1.3) и $I_{m\ }$ из (1.1) получим амплитуду напряжения на конденсаторе при резонансе:

Учтем, что:

\[{\omega }_0=\frac{1}{\sqrt{LC}}(1.5)\]

подставим выражение для резонансной частоты в формулу (1.4), получим:

где $O=\frac{1}{R}\sqrt{\frac{L}{C}}$ -- добротность контура.

Ответ: $U_{mC}={{\mathcal E}}_mO.$

Пример 2

Задание: Чему равна амплитуда напряжения на индуктивности ($U_{mL}$) при резонансе напряжений, если колебания затухают слабо? Добротность контура равна$\ O$. Внешняя ЭДС изменяется в соответствии с законом: ${\mathcal E}={{\mathcal E}}_m{sin \left(\omega t\right)\ }.$

Решение:

Выражение для напряжения на индуктивности можно записать как:

где выражение для амплитуды тока ($I_m(\omega_0)$) при резонансе напряжений:

Проведем замену:

\[{\omega }_0=\frac{1}{\sqrt{LC}}\left(2.4\right).\]

Получим, что амплитуда напряжения на индуктивности равна:

Ответ: $U_{mL}{={\mathcal E}}_mO.$

Колебания напряжения на конденсаторе и индуктивности имеют равные амплитуды, но их разность фаз равна $\pi $.

То они по-своему воздействуют на генератор, питающий цепь, и на фазовые соотношения между током и напряжением .

Катушка индуктивности вносит сдвиг фаз, при котором ток отстает от напряжения на четверть периода, конденсатор же, наоборот, заставляет напряжение в цепи отставать по фазе от тока на четверть периода. Таким образом, действие индуктивного сопротивления на сдвиг фаз между током и напряжением в цепи противоположно действию емкостного сопротивления.

Это приводит к тому, что общий сдвиг фаз между током и напряжением в цепи зависит от соотношения величин индуктивного и емкостного сопротивлений.

Если величина емкостного сопротивления цепи больше индуктивного, то цепь носит емкостный характер, т. е. напряжение отстает по фазе от тока. Если же, наоборот, индуктивное сопротивление цепи больше емкостного, то напряжение опережает ток, и, следовательно, цепь носит индуктивный характер.

Общее реактивное сопротивление Хобщ рассматриваемой нами цепи определяется путем сложения индуктивного сопротивления катушки X L и емкостного сопротивления конденсатора Х С.

Но так как действие этих сопротивлений в цепи противоположно, то одному из них, а именно Хс приписывается знак минус, и общее реактивное сопротивление определяется по формуле:




Применив к этой цепи , получим:

Формулу эту можно преобразовать следующим образом:

В полученном равенстве I X L -действующее значение слагающей общего напряжения цепи, идущей на преодоление индуктивного сопротивления цепи, а I Х С -действующее значение слагающей общего напряжения цепи, идущей на преодоление емкостного сопротивления.

Таким образом, общее напряжение цепи, состоящей из последовательного соединения катушки и конденсатора, можно рассматривать как состоящее из двух слагаемых, величины которых зависят от величин индуктивного и емкостного сопротивлений цепи.

Мы считали, что такая цепь не обладает активным сопротивлением. Однако в тех случаях, когда активное сопротивление цепи не настолько уже мало, чтобы им можно было пренебречь, общее сопротивление цепи определяется следующей формулой:


где R - общее активное сопротивление цепи, X L -Х С - ее общее реактивное сопротивление. Переходя к формуле закона Ома, мы вправе написать:

Резонанс напряжений в цепи переменного тока

Индуктивное и емкостное сопротивления, соединенные последовательно, вызывают в цепи переменного тока меньший сдвиг фаз между током и напряжением, чем если бы они были включены в цепь по отдельности.

Иначе говоря, от одновременного действия этих двух различных по своему характеру реактивных сопротивлений в цепи происходит компенсация (взаимное уничтожение) сдвига фаз.

Полная компенсация, т. е. полное уничтожение сдвига фаз между током и напряжением в такой цепи, наступит тогда, когда индуктивное сопротивление окажется равным емкостному сопротивлению цепи, т. е. когда X L = Х С или, что то же, когда ωL = 1 / ωС.

Цепь в этом случае будет вести себя как чисто активное сопротивление, т. е. как будто в ней нет ни катушки, ни конденсатора. Величина этого сопротивления определится суммой активных сопротивлений катушки и соединительных проводов. При этом в цепи будет наибольшим и определится формулой закона Ома I = U / R , где вместо Z теперь поставлено R.

Одновременно с этим действующие напряжения как на катушке U L = I X L так и на конденсаторе Uc = I Х С окажутся равными и будут максимально большой величины. При малом активном сопротивлении цепи эти напряжения могут во много раз превысить общее напряжение U на зажимах цепи. Это интересное явление называется в электротехнике резонансом напряжений .

На рис. 1 приведены кривые напряжений, тока и мощности при резонансе напряжений в цепи.

Следует твердо помнить, что сопротивления X L и Х С являются переменными, зависящими от частоты тока, и стоит хотя бы немного изменить частоту его, например, увеличить, как X L = ωL возрастет, а Х С = = 1 / ωС уменьшится, и тем самым в цепи сразу нарушится резонанс напряжений, при этом наряду с активным сопротивлением в цепи появится и реактивное. То же самое произойдет, если изменить величину индуктивности или емкости цепи.

При резонансе напряжений мощность источника тока будет затрачиваться только на преодоление активного сопротивления цепи, т. е. на нагрев проводников.

Действительно, в цепи с одной катушкой индуктивности происходит колебание энергии, т. е. периодический переход энергии из генератора в катушки. В цепи с конденсатором происходит то же самое, но за счет энергии электрического поля конденсатора. В цепи же с конденсатором и катушкой индуктивности при резонансе напряжений (X L = Х С) энергия, раз запасенная цепью, периодически переходит из катушки в конденсатор и обратно и на долю источника тока выпадает только расход энергии, необходимый для преодоления активного сопротивления цепи. Таким образом, обмен энергии происходит между конденсатором и катушкой почти без участия генератора.

Стоит только нарушить резонанс напряжений в цени, как энергия магнитного поля катушки станет не равной энергии электрического поля конденсатора, и в процессе обмена энергии между этими полями появится избыток энергии, который периодически будет то поступать из источника в цепь, то возвращаться ему обратно цепью.

Явление это очень сходно с тем, что происходит в часовом механизме. Маятник часов мог бы непрерывно колебаться и без помощи пружины (или груза в часах-ходиках), если бы не силы трения, тормозящие его движение.

Пружина же, сообщая маятнику в нужный момент часть своей энергии, помогает ему преодолеть силы трения, чем и достигается непрерывность колебаний.

Подобно этому и в электрической цепи, при явлении резонанса в ней, источник тока расходует свою энергию только на преодоление активного сопротивления цепи, тем самым поддерживая в ней колебательный процесс.

Итак, мы приходим к выводу, что цепь переменного тока, состоящая из генератора и последовательно соединенных катушки индуктивности и конденсатора, при определенных условиях X L = Х С превращается в колебательную систему . Такая цепь получила название колебательного контура.

Из равенства X L = Х С можно определить значения частоты генератора, при которой наступает явление резонанса напряжений:

: входной контур приемника настраивается конденсатором переменной емкости (или вариометром) таким образом, что в нем возникает резонанс напряжений. Этим достигается необходимое для нормальной работы приемника большое повышение напряжения на катушке по сравнению с напряжением в цепи, созданным антенной.

Наряду с полезным использованием явления резонанса напряжений в электротехнике технике часто бывают случаи, когда резонанс напряжений вреден. Большое повышение напряжения на отдельных участках цепи (на катушке или на конденсаторе) по сравнению с напряжением генератора может привести к порче отдельных деталей и измерительных приборов.

В электротехнике при анализе режимов работы электрических цепей широко используется понятие двухполюсника. Двухполюсником принято называть часть электрической цепи произвольной конфигурации, рассматриваемую относительно двух выделенных выводов (полюсов). Двухполюсники, не содержащие источников энергии, называются пассивными. Всякий пассивный двухполюсник характеризуется одной величиной – входным сопротивлением, т.е. сопротивлением, измеряемым (или вычисляемым) относительно двух выводов двухполюсника. Входное сопротивление и входная проводимость являются взаимно обратными величинами.

Пусть пассивный двухполюсник содержит одну или несколько индуктивностей и один или несколько конденсаторов. Под резонансным режимом работы такого двухполюсника понимают режим (режимы) двухполюсника при котором входное сопротивление является чисто активным. По отношению к внешней цепи двухполюсник ведет себя как активное сопротивление, вследствие чего входные напряжение и ток совпадают по фазе. Различают две разновидности резонансных режимов: резонанс напряжения и резонанс тока.

Резонанс напряжений

В простейшем случае резонанс напряжений может быть получен в электрической цепи переменного тока при последовательном включении катушки индуктивности и конденсаторов. При этом, изменяя емкость конденсаторов при постоянных параметрах катушки, получают резонанс напряжений при неизменных значениях напряжения и индуктивности, частоты и активного сопротивления цепи. При изменении емкости конденсаторов С происходит изменение реактивного емкостного сопротивления. При этом полное сопротивление цепи также изменяется, следовательно, изменяются ток, коэффициент мощности, напряжения на катушке индуктивности, конденсаторах, а также активная, реактивная и полная мощности электрической цепи. Зависимости токаI , коэффициента мощности cosи полного сопротивленияZ цепи переменного тока в функции емкостного сопротивления (резонансные кривые) для рассматриваемой цепи приведены на рис. 9,а . Векторная диаграмма тока и напряжений этой цепи при резонансе представлена на рис. 9,б .

Как видно из этой диаграммы, реактивная составляющая напряжения U L на катушке при резонансе равна напряжениюU С на конденсаторе. При этом напряжение на катушке индуктивностиU к при резонансе вследствие того, что катушка кроме реактивного сопротивленияX L обладает еще и активным сопротивлениемR , несколько больше, чем напряжение на конденсаторе.

Анализ представленных выражений (2), а также рис. 9,а иб показывают, что резонанс напряжений имеет ряд отличительных особенностей.

1. При резонансе напряжений полное сопротивление электрической цепи переменного тока принимает минимальное значение и оказывается равным ее активному сопротивлению, т.е.

2. Из этого следует, что при неизменном напряжении питающей сети (U = const) при резонансе напряжений ток в цепи достигает наибольшего значенияI =U /Z =U /R . Теоретически ток может достигать больших значений, определяемых напряжением сети и активным сопротивлением катушки.

а )б )

3. Коэффициент мощности при резонансе cos=R /Z =R /R = 1, т.е. принимает наибольшее значение, которому соответствует угол= 0. Это означает, что вектор токаи вектор напряжения сетипри этом совпадают по направлению, так как они имеют равные начальные фазы i = u .

4. Активная мощность при резонансе P =RI 2 имеет наибольшее значение, равное полной мощностиS , в то же время реактивная мощность цепиQ =XI 2 = (X L X C)I 2 оказывается равной нулю:Q =Q L Q C = 0.

5. При резонансе напряжений напряжения на емкости и индуктивности оказываются равными U С =U L =X C I =X L I и в зависимости от тока и реактивных сопротивлений могут принимать большие значения, во много раз превышающие напряжение питающей сети. При этом напряжение на активном сопротивлении оказывается равным напряжению питающей сети, т.е.U R =U .

Резонанс напряжений в промышленных электротехнических установках нежелательное и опасное явление, так как оно может привести к аварии вследствие недопустимого перегрева отдельных элементов электрической цепи или пробою изоляции обмоток электрических машин и аппаратов, изоляции кабелей и конденсаторов при возможном перенапряжении на отдельных участках цепи. В то же время резонанс напряжений широко используется в различного рода приборах и устройствах электроники.

В продолжение темы:
Роутеры

Восстановление дисков и разделов в Acronis 2011 Используя функцию восстановления, вы легко и быстро сможете восстановить утраченную информацию, либо вернуть компьютер к...

Новые статьи
/
Популярные