Решение иррациональных интегралов примеры. Сложные интегралы

Вспоминаем счастливые школьные годы. Пионеры на уроках математики, приступая к изучению корней, в первую очередь знакомились с квадратным корнем. Мы пойдем тем же путем.

Пример 1

Найти неопределенный интеграл

Анализируя подынтегральную функцию, приходишь к печальному выводу, что она совсем не напоминает табличные интегралы. Вот если бы всё это добро находилось в числителе – было бы просто. Или бы корня внизу не было. Или многочлена. Никакие методы интегрирования дробей тоже не помогают. Что делать?

Основной приём решения иррациональных интегралов – это замена переменной, которая избавит нас от ВСЕХ корней в подынтегральной функции.

Отметим, что эта замена немного своеобразная, ее техническая реализация отличается от «классического» способа замены, который рассмотрен на уроке Метод замены в неопределенном интеграле .

В данном примере нужно провести замену x = t 2 , то есть, вместо «икса» под корнем у нас окажется t 2 . Почему замена именно такая? Потому что , и в результате замены корень пропадёт.

Если бы в подынтегральной функции вместо квадратного корня у нас находился , то мы бы провели замену . Если бы там был , то провели бы и так далее.

Хорошо, у нас превратится в . Что произойдет с многочленом ? Сложностей нет: если , то .

Осталось выяснить, во что превратится дифференциал . Делается это так:

Берем нашу замену и навешиваем дифференциалы на обе части :

(распишем максимально подробно).

Оформление решения должно выглядеть примерно так:

.

Проведем замену: .

.

(1) Проводим подстановку после замены (как, что и куда, уже рассмотрено).

(2) Выносим константу за пределы интеграла. Числитель и знаменатель сокращаем на t .

(3) Получившийся интеграл является табличным, готовим его для интегрирования, выделяя квадрат.

(4) Интегрируем по таблице, используя формулу

.

(5) Проводим обратную замену. Как это делается? Вспоминаем, от чего плясали: если , то .

Пример 2

Найти неопределенный интеграл

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Как-то так получилось, что в Примерах 1, 2 «голый» числитель с одиноким дифференциалом . Исправим ситуацию.

Пример 3

Найти неопределенный интеграл

Предварительный анализ подынтегральной функции опять показывает, что лёгкого пути нет. А поэтому нужно избавляться от корня.

Проведем замену: .

Заобозначаем ВСЁ выражение под корнем . Замена из предыдущих примеров здесь не годится (точнее, сделать-то её можно, но это не избавит нас от корня).

Навешиваем дифференциалы на обе части:

С числителем разобрались. Что делать с в знаменателе?

Берем нашу замену и выражаем из неё: .

Если , то .

(1) Проводим подстановку в соответствии с выполненной заменой.

(2) Причесываем числитель. Константу здесь я предпочел не выносить за знак интеграла (можно делать и так, ошибкой не будет)

(3) Раскладываем числитель в сумму. Еще раз настоятельно рекомендуем ознакомиться с первым параграфом урока Интегрирование некоторых дробей . Канители с разложением числителя в сумму в иррациональных интегралах будет предостаточно, очень важно отработать это прием.

(4) Почленно делим числитель на знаменатель.

(5) Используем свойства линейности неопределенного интеграла. Во втором интеграле выделяем квадрат для последующего интегрирования по таблице.

(6) Интегрируем по таблице. Первый интеграл совсем простой, во втором используем табличную формулу высокого логарифма .

(7) Проводим обратную замену. Если мы проводили замену , то, обратно: .

Пример 4

Найти неопределенный интеграл

Это пример для самостоятельного решения, если вы невнимательно проработали предыдущие примеры, то допустите ошибку! Полное решение и ответ в конце урока.

Принципиально так же решаются интегралы с несколькими одинаковыми корнями, например

И т.д. А что делать, если в подынтегральной функции корни разные ?

Пример 5

Найти неопределенный интеграл

Вот и пришла расплата за голые числители. Когда встречается такой интеграл, обычно становится страшно. Но страхи напрасны, после проведения подходящей замены подынтегральная функция упрощается. Задача состоит в следующем: провести удачную замену, чтобы сразу избавиться от ВСЕХ корней.

Когда даны разные корни, удобно придерживаться определённой схемы решения.

Сначала выписываем на черновике подынтегральную функцию, при этом все корни представляем в виде :

Нас будут интересовать знаменатели степеней:

Класс иррациональных функцийочень широк, поэтому универсального способа их интегрирования просто быть не может. В этой статье попытаемся выделить наиболее характерные виды иррациональных подынтегральных функций и поставить им в соответствие метод интегрирования.

Бывают случаи, когда уместно использование метода подведения под знак дифференциала. Например, при нахождении неопределенных интегралов вида, гдеp – рациональная дробь.

Пример.

Найти неопределенный интеграл .

Решение.

Не трудно заметить, что . Следовательно, подводим под знак дифференциала и используем таблицу первообразных:

Ответ:

.

13. Дробно-линейная подстановка

Интегралы типа где а, b, с, d - действительные числа,a,b,...,d,g - натуральные числа, сводятся к интегралам от рациональной функции путем подстановкигде К - наименьшее общee кратное знаменателей дробей

Действительно, из подстановки следует, чтои

т. е. х и dx выражаются через рациональные функции от t. При этом и каждая степень дроби выражается через рациональную функцию от t.

Пример 33.4 . Найти интеграл

Решение: Наименьшее общee кратное знаменателей дробей 2/3 и 1/2 есть 6.

Поэтому полагаем х+2=t 6 , х=t 6 -2, dx=6t 5 dt, Следовательно,

Пример 33.5. Указать подстановку для нахождения интегралов:

Решение: Для I 1 подстановка х=t 2 , для I 2 подстановка

14. Тригонометрическая подстановка

Интегралы типа приводятся к интегралам от функций, рационально зависящих от тригонометрических функций, с помощью следующих тригонометрических подстановок: х=а sint для первого интеграла; х=а tgt для второго интеграла;для третьего интеграла.

Пример 33.6. Найти интеграл

Решение: Положим х=2 sin t, dx=2 cos tdt, t=arcsin х/2. Тогда

Здесь подынтегральная функция есть рациональная функция относительно х иВыделив под радикалом полный квадрат и сделав подстановку, интегралы указанного типа приводятся к интегралам уже pасcмoтpeннoгo типа, т. е. к интегралам типаЭти интегралы можно вычислить с помощью соответствующих тригонометрических подстановок.

Пример 33.7. Найти интеграл

Решение: Так как х 2 +2х-4=(х+1) 2 -5, то х+1=t, x=t-1, dx=dt. ПоэтомуПоложим

Замечание: Интеграл типа целессooбразно находить с помощью подстановки х=1/t.

15. Определенный интеграл

Пусть функция задана на отрезкеи имеет на нем первообразную. Разностьназываютопределенным интегралом функции по отрезкуи обозначают. Итак,

Разность записывают в виде, тогда. Числаиназываютпределами интегрирования .

Например, одна из первообразных для функции. Поэтому

16 . Если с - постоянное число и функция ƒ(х) интегрируема на , то

т. е. постоянный множитель с можно выносить за знак определенного интеграла.

▼Составим интегральную сумму для функции с ƒ(х). Имеем:

Тогда Отсюда вытекает, что функцияс ƒ(х) интегрируема на [а; b] и справедлива формула (38.1).▲

2. Если функции ƒ 1 (х) и ƒ 2 (х) интегрируемы на [а;b], тогда интегрируема на [а; b] их сумма u

т. е. интеграл от суммы равен сумме интегралов.


Свойство 2 распространяется на сумму любого конечного числа слагаемых.

3.

Это свойство можно принять по определению. Это свойство также подтверждается формулой Ньютона-Лейбница.

4. Если функция ƒ(х) интегрируема на [а; b] и а < с < b, то

т. е. интеграл по всему отрезку равен сумме интегралов по частям этого отрезка. Это свойство называют аддитивностью определенного интеграла (или свойством аддитивности).

При разбиении отрезка [а;b] на части включим точку с в число точек деления (это можно сделать ввиду независимости предела интегральной суммы от способа разбиения отрезка [а; b] на части). Если с = х m , то интегральную сумму можно разбить на две суммы:

Каждая из написанных сумм является интегральной соответственно для отрезков [а; b], [а; с] и [с; b]. Переходя к пределу в последнем равенстве при n → ∞ (λ → 0), получим равенство (38.3).

Свойство 4 справедливо при любом расположении точек а, b, с (считаем, что функция ƒ (х) интегрируема на большем из получающихся отрезков).

Так, например, если а < b < с, то

(использованы свойства 4 и 3).

5. «Теорема о среднем». Если функция ƒ(х) непрерывна на отрезке [а; b], то существует тонка с є [а; b] такая, что

▼По формуле Ньютона-Лейбница имеем

где F"(x) = ƒ(х). Применяя к разности F(b)-F(a) теорему Лагранжа (теорему о конечном приращении функции), получим

F(b)-F(a) = F"(c) (b-а) = ƒ(с) (b-а).▲

Свойство 5 («теорема о среднем») при ƒ (х) ≥ 0 имеет простой геометрический смысл: значение определенного интеграла равно, при некотором с є (а; b), площади прямоугольника с высотой ƒ (с) и основанием b- а (см. рис. 170). Число

называется средним значением функции ƒ(х) на отрезке [а; b].

6. Если функция ƒ (х) сохраняет знак на отрезке [а; b], где а < b, то интегралимеет тот же знак, что и функция. Так, если ƒ(х)≥0 на отрезке [а; b], то

▼По «теореме о среднем» (свойство 5)

где с є [а; b]. А так как ƒ(х) ≥ 0 для всех х Î [а; b], то и

ƒ(с)≥0, b-а>0.

Поэтому ƒ(с) (b-а) ≥ 0, т. е.

7. Неравенство между непрерывными функциями на отрезке [а; b], (a

▼Так как ƒ 2 (х)-ƒ 1 (x)≥0, то при а < b, согласно свойству 6, имеем

Или, согласно свойству 2,

Отметим,что дифференцировать неравенства нельзя.

8. Оценка интеграла. Если m и М - соответственно наименьшее и наибольшее значения функции у = ƒ (х) на отрезке [а; b], (а < b), то

▼Так как для любого х є [а;b] имеем m≤ƒ(х)≤М, то, согласно свойству 7, имеем

Применяяк крайним интегралам свойство 5, получаем

Если ƒ(х)≥0, то свойство 8 иллюстрирует ся геометрически: площадь криволинейной трапеции заключена между площадями прямоугольников, основание которых есть , а высоты равны m и М (см. рис. 171).

9. Модуль определенного интеграла не превосходит интеграла от модуля подынтегральной функции:

▼Применяя свойство 7 к очевидным неравенствам -|ƒ(х)|≤ƒ(х)≤|ƒ(х)|, получаем

Отсюда следует, что

10. Производная определенного интеграла по переменному верхнему пределу равна подынтегральной функции, в которой переменная интегрирования заменена этим пределом, т. е.

Вычисление площади фигуры является одной из наиболее не простых проблем теории площадей. В школьном курсе геометрии мы научились находить площади основных геометрических фигур, например, круга, треугольника, ромба и т.п. Однако намного чаще приходится сталкиваться с вычислением площадей более сложных фигур. При решении подобных задач приходится прибегать к интегральному исчислению.

В этой статье мы рассмотрим задачу о вычислении площади криволинейной трапеции, причем подойдем к ней в геометрическом смысле. Это позволит нам выяснить прямую связь между определенным интегралом и площадью криволинейной трапеции.

Универсального способа решения иррациональных уравнений нет, так как их класс отличается количеством. В статье будут выделены характерные виды уравнений с подстановкой при помощи метода интегрирования.

Для использования метода непосредственного интегрирования необходимо вычислять неопределенные интегралы типа ∫ k x + b p d x , где p является рациональной дробью, k и b являются действительными коэффициентами.

Пример 1

Найти и вычислить первообразные функции y = 1 3 x - 1 3 .

Решение

По правилу интегрирования необходимо применить формулу ∫ f (k · x + b) d x = 1 k · F (k · x + b) + C , а таблица первообразных говорит о том, что имеется готовое решение данной функции. Получаем, что

∫ d x 3 x - 1 3 = ∫ (3 x - 1) - 1 3 d x = 1 3 · 1 - 1 3 + 1 · (3 x - 1) - 1 3 + 1 + C = = 1 2 (3 x - 1) 2 3 + C

Ответ: ∫ d x 3 x - 1 3 = 1 2 (3 x - 1) 2 3 + C .

Имеют место быть случаи, когда можно использовать метод подведения под знак дифференциала. Это решается по принципу нахождения неопределенных интегралов вида ∫ f " (x) · (f (x)) p d x , когда значение p считается рациональной дробью.

Пример 2

Найти неопределенный интеграл ∫ 3 x 2 + 5 x 3 + 5 x - 7 7 6 d x .

Решение

Отметим, что d x 3 + 5 x - 7 = x 3 + 5 x - 7 " d x = (3 x 2 + 5) d x . Тогда необходимо произвести подведение под знак дифференциала с использованием таблиц первообразных. Получаем, что

∫ 3 x 2 + 5 x 3 + 5 x - 7 7 6 d x = ∫ (x 3 + 5 x - 7) - 7 6 · (3 x 2 + 5) d x = = ∫ (x 3 + 5 x - 7) - 7 6 d (x 3 + 5 x - 7) = x 3 + 5 x - 7 = z = = ∫ z - 7 6 d z = 1 - 7 6 + 1 z - 7 6 + 1 + C = - 6 z - 1 6 + C = z = x 3 + 5 x - 7 = - 6 (x 3 + 5 x - 7) 6 + C

Ответ: ∫ 3 x 2 + 5 x 3 + 5 x - 7 7 6 d x = - 6 (x 3 + 5 x - 7) 6 + C .

Решение неопределенных интегралов предусматривает формулу вида ∫ d x x 2 + p x + q , где p и q являются действительными коэффициентами. Тогда необходимо выделить полный квадрат из-под корня. Получаем, что

x 2 + p x + q = x 2 + p x + p 2 2 - p 2 2 + q = x + p 2 2 + 4 q - p 2 4

Применив формулу, расположенную в таблице неопределенных интегралов, получаем:

∫ d x x 2 ± α = ln x + x 2 ± α + C

Тогда вычисление интеграла производится:

∫ d x x 2 + p x + q = ∫ d x x + p 2 2 + 4 q - p 2 4 = = ln x + p 2 + x + p 2 2 + 4 q - p 2 4 + C = = ln x + p 2 + x 2 + p x + q + C

Пример 3

Найти неопределенный интеграл вида ∫ d x 2 x 2 + 3 x - 1 .

Решение

Для вычисления необходимо вынести число 2 и расположить его перед радикалом:

∫ d x 2 x 2 + 3 x - 1 = ∫ d x 2 x 2 + 3 2 x - 1 2 = 1 2 ∫ d x x 2 + 3 2 x - 1 2

Произвести выделение полного квадрата в подкоренном выражении. Получим, что

x 2 + 3 2 x - 1 2 = x 2 + 3 2 x + 3 4 2 - 3 4 2 - 1 2 = x + 3 4 2 - 17 16

Тогда получаем неопределенный интеграл вида 1 2 ∫ d x x 2 + 3 2 x - 1 2 = 1 2 ∫ d x x + 3 4 2 - 17 16 = = 1 2 ln x + 3 4 + x 2 + 3 2 x - 1 2 + C

Ответ: d x x 2 + 3 x - 1 = 1 2 ln x + 3 4 + x 2 + 3 2 x - 1 2 + C

Интегрирование иррациональных функций производится аналогичным способом. Применимо для функций вида y = 1 - x 2 + p x + q .

Пример 4

Найти неопределенный интеграл ∫ d x - x 2 + 4 x + 5 .

Решение

Для начала необходимо вывести квадрат знаменателя выражения из-под корня.

∫ d x - x 2 + 4 x + 5 = ∫ d x - x 2 - 4 x - 5 = = ∫ d x - x 2 - 4 x + 4 - 4 - 5 = ∫ d x - x - 2 2 - 9 = ∫ d x - (x - 2) 2 + 9

Табличный интеграл имеет вид ∫ d x a 2 - x 2 = a r c sin x a + C , тогда получаем, что ∫ d x - x 2 + 4 x + 5 = ∫ d x - (x - 2) 2 + 9 = a r c sin x - 2 3 + C

Ответ: ∫ d x - x 2 + 4 x + 5 = a r c sin x - 2 3 + C .

Процесс нахождения первообразных иррациональных функций вида y = M x + N x 2 + p x + q , где имеющиеся M , N , p , q являются действительными коэффициентами, причем имеют схожесть с интегрированием простейших дробей третьего типа. Это преобразование имеет несколько этапов:

подведение дифференциала под корень, выделение полного квадрата выражения под корнем, применение табличных формул.

Пример 5

Найти первообразные функции y = x + 2 x 2 - 3 x + 1 .

Решение

Из условия имеем, что d (x 2 - 3 x + 1) = (2 x - 3) d x и x + 2 = 1 2 (2 x - 3) + 7 2 , тогда (x + 2) d x = 1 2 (2 x - 3) + 7 2 d x = 1 2 d (x 2 - 3 x + 1) + 7 2 d x .

Рассчитаем интеграл: ∫ x + 2 x 2 - 3 x + 1 d x = 1 2 ∫ d (x 2 - 3 x + 1) x 2 - 3 x + 1 + 7 2 ∫ d x x 2 - 3 x + 1 = = 1 2 ∫ (x 2 - 3 x + 1) - 1 2 d (x 2 - 3 x + 1) + 7 2 ∫ d x x - 3 2 2 - 5 4 = = 1 2 · 1 - 1 2 + 1 · x 2 - 3 x + 1 - 1 2 + 1 + 7 2 ln x - 3 2 + x - 3 2 - 5 4 + C = = x 2 - 3 x + 1 + 7 2 ln x - 3 2 + x 2 - 3 x + 1 + C

Ответ: ∫ x + 2 x 2 - 3 x + 1 d x = x 2 - 3 x + 1 + 7 2 ln x - 3 2 + x 2 - 3 x + 1 + C .

Поиск неопределенных интегралов функции ∫ x m (a + b x n) p d x осуществляется при помощи метода подстановки.

Для решения необходимо ввести новые переменные:

  1. Когда число p является целым, тогда считают, что x = z N , а N является общим знаменателем для m , n .
  2. Когда m + 1 n является целым числом, тогда a + b x n = z N , а N является знаменателем числа p .
  3. Когда m + 1 n + p является целым числом, то необходим ввод переменной a x - n + b = z N , а N является знаменателем числа p .
Пример 6

Найти определенный интеграл ∫ 1 x 2 x - 9 d x .

Решение

Получаем, что ∫ 1 x 2 x - 9 d x = ∫ x - 1 · (- 9 + 2 x 1) - 1 2 d x . Отсюда следует, что m = - 1 , n = 1 , p = - 1 2 , тогда m + 1 n = - 1 + 1 1 = 0 является целым числом. Можно ввести новую переменную вида - 9 + 2 x = z 2 . Необходимо выразить x через z . На выходы получим, что

9 + 2 x = z 2 ⇒ x = z 2 + 9 2 ⇒ d x = z 2 + 9 2 " d z = z d z - 9 + 2 x = z

Необходимо произвести подстановку в заданный интеграл. Имеем, что

∫ d x x 2 x - 9 = ∫ z d z z 2 + 9 2 · z = 2 ∫ d z z 2 + 9 = = 2 3 a r c t g z 3 + C = 2 3 a r c c t g 2 x - 9 3 + C

Ответ: ∫ d x x 2 x - 9 = 2 3 a r c c t g 2 x - 9 3 + C .

Для упрощения решения иррациональных уравнений применяются основные методы интегрирования.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Под иррациональным понимают выражение, в котором независимая переменная %%x%% или многочлен %%P_n(x)%% степени %%n \in \mathbb{N}%% входят под знак радикала (от латинского radix — корень), т.е. возводятся в дробную степень. Некоторые классы иррациональных относительно %%x%% подынтегральных выражений заменой переменной удается свести к рациональным выражениям относительно новой переменной.

Понятие рациональной функции одной переменной можно распространить на несколько аргументов. Если над каждым аргументом %%u, v, \dotsc, w%% при вычислении значения функции предусмотрены лишь арифметические действия и возведение в целую степень, то говорят о рациональной функции этих аргументов, которую обычно обозначают %%R(u, v, \dotsc, w)%%. Аргументы такой функции сами могут быть функциями независимой перменной %%x%%, в том числе и радикалами вида %%\sqrt[n]{x}, n \in \mathbb{N}%%. Например, рациональная функция $$ R(u,v,w) = \frac{u + v^2}{w} $$ при %%u = x, v = \sqrt{x}%% и %%w = \sqrt{x^2 + 1}%% является рациональной функцией $$ R\left(x, \sqrt{x}, \sqrt{x^2+1}\right) = \frac{x + \sqrt{x^2}}{\sqrt{x^2 + 1}} = f(x) $$ от %%x%% и радикалов %%\sqrt{x}%% и %%\sqrt{x^2 + 1}%%, тогда как функция %%f(x)%% будет иррациональной (алгебраической) функцией одной независимой переменной %%x%%.

Рассмотрим интегралы вида %%\int R(x, \sqrt[n]{x}) \mathrm{d}x%%. Такие интегралы рационалируются заменой переменной %%t = \sqrt[n]{x}%%, тогда %%x = t^n, \mathrm{d}x = nt^{n-1}%%.

Пример 1

Найти %%\displaystyle\int \frac{\mathrm{d}x}{\sqrt{x} + \sqrt{x}}%%.

Подынтегральная функция искомого аргумента записана как функция от радикалов степени %%2%% и %%3%%. Так как наименьшее общее кратное чисел %%2%% и %%3%% равно %%6%%, то данный интеграл является интегралом типа %%\int R(x, \sqrt{x}) \mathrm{d}x%% и может быть рационализирован посредством замены %%\sqrt{x} = t%%. Тогда %%x = t^6, \mathrm{d}x = 6t \mathrm{d}t, \sqrt{x} = t^3, \sqrt{x} =t^2%%. Следовательно, $$ \int \frac{\mathrm{d}x}{\sqrt{x} + \sqrt{x}} = \int \frac{6t^5 \mathrm{d}t}{t^3 + t^2} = 6\int\frac{t^3}{t+1}\mathrm{d}t. $$ Примем %%t + 1 = z, \mathrm{d}t = \mathrm{d}z, z = t + 1 = \sqrt{x} + 1%% и $$ \begin{array}{ll} \int \frac{\mathrm{d}x}{\sqrt{x} + \sqrt{x}} &= 6\int\frac{(z-1)^3}{z} \mathrm{d}t = \\ &= 6\int z^2 dz -18 \int z \mathrm{d}z + 18\int \mathrm{d}z -6\int\frac{\mathrm{d}z}{z} = \\ &= 2z^3 - 9 z^2 + 18z -6\ln|z| + C = \\ &= 2 \left(\sqrt{x} + 1\right)^3 - 9 \left(\sqrt{x} + 1\right)^2 + \\ &+~ 18 \left(\sqrt{x} + 1\right) - 6 \ln\left|\sqrt{x} + 1\right| + C \end{array} $$

Интегралы вида %%\int R(x, \sqrt[n]{x}) \mathrm{d}x%% являются частным случаем дробно линейных иррациональностей, т.е. интегралов вида %%\displaystyle\int R\left(x, \sqrt[n]{\dfrac{ax+b}{cd+d}}\right) \mathrm{d}x%%, где %%ad - bc \neq 0%%, которые допускают рационализацию путем замены переменной %%t = \sqrt[n]{\dfrac{ax+b}{cd+d}}%%, тогда %%x = \dfrac{dt^n - b}{a - ct^n}%%. Тогда $$ \mathrm{d}x = \frac{n t^{n-1}(ad - bc)}{\left(a - ct^n\right)^2}\mathrm{d}t. $$

Пример 2

Найти %%\displaystyle\int \sqrt{\dfrac{1 -x}{1 + x}}\dfrac{\mathrm{d}x}{x + 1}%%.

Примем %%t = \sqrt{\dfrac{1 -x}{1 + x}}%%, тогда %%x = \dfrac{1 - t^2}{1 + t^2}%%, $$ \begin{array}{l} \mathrm{d}x = -\frac{4t\mathrm{d}t}{\left(1 + t^2\right)^2}, \\ 1 + x = \frac{2}{1 + t^2}, \\ \frac{1}{x + 1} = \frac{1 + t^2}{2}. \end{array} $$ Следовательно, $$ \begin{array}{l} \int \sqrt{\dfrac{1 -x}{1 + x}}\frac{\mathrm{d}x}{x + 1} = \\ = \frac{t(1 + t^2)}{2}\left(-\frac{4t \mathrm{d}t}{\left(1 + t^2\right)^2}\right) = \\ = -2\int \frac{t^2\mathrm{d}t}{1 + t^2} = \\ = -2\int \mathrm{d}t + 2\int \frac{\mathrm{d}t}{1 + t^2} = \\ = -2t + \text{arctg}~t + C = \\ = -2\sqrt{\dfrac{1 -x}{1 + x}} + \text{arctg}~\sqrt{\dfrac{1 -x}{1 + x}} + C. \end{array} $$

Рассмотрим интегралы вида %%\int R\left(x, \sqrt{ax^2 + bx + c}\right) \mathrm{d}x%%. В простейших случаях такие интегралы сводятся к табличным, если после выделения полного квадрата сделать замену переменных.

Пример 3

Найти интеграл %%\displaystyle\int \dfrac{\mathrm{d}x}{\sqrt{x^2 + 4x + 5}}%%.

Учитывая, что %%x^2 + 4x + 5 = (x+2)^2 + 1%%, примем %%t = x + 2, \mathrm{d}x = \mathrm{d}t%%, тогда $$ \begin{array}{ll} \int \frac{\mathrm{d}x}{\sqrt{x^2 + 4x + 5}} &= \int \frac{\mathrm{d}t}{\sqrt{t^2 + 1}} = \\ &= \ln\left|t + \sqrt{t^2 + 1}\right| + C = \\ &= \ln\left|x + 2 + \sqrt{x^2 + 4x + 5}\right| + C. \end{array} $$

В более сложных случаях для нахождения интегралов вида %%\int R\left(x, \sqrt{ax^2 + bx + c}\right) \mathrm{d}x%% используются

Иррациональная функция от переменной - это функция, которая образована из переменной и произвольных постоянных с помощью конечного числа операций сложения, вычитания, умножения (возведения в целочисленную степень), деления и извлечения корней. Иррациональная функция отличается от рациональной тем, что иррациональная функция содержит операции извлечения корней.

Существует три основных типа иррациональных функций, неопределенные интегралы от которых приводятся к интегралам от рациональных функций. Это интегралы, содержащие корни произвольных целочисленных степеней из дробно-линейной функции (корни могут быть различных степеней, но от одной и той же, дробно-линейной функции); интегралы от дифференциального бинома и интегралы с квадратным корнем из квадратного трехчлена.

Важное замечание. Корни многозначны!

При вычислении интегралов, содержащих корни, часто встречаются выражения вида , где - некоторая функция от переменной интегрирования . При этом следует иметь в виду, что . То есть, при t > 0 , |t| = t . При t < 0 , |t| = - t . Поэтому, при вычислении подобных интегралов, нужно отдельно рассматривать случаи t > 0 и t < 0 . Это можно сделать, если писать знаки или там, где это необходимо. Подразумевая, что верхний знак относится к случаю t > 0 , а нижний - к случаю t < 0 . При дальнейшем преобразовании, эти знаки, как правило, взаимно сокращаются.

Возможен и второй подход, при котором подынтегральную функцию и результат интегрирования можно рассматривать как комплексные функции от комплексных переменных. Тогда можно не следить за знаками в подкоренных выражениях. Этот подход применим, если подынтегральная функция является аналитической, то есть дифференцируемой функцией от комплексной переменной. В этом случае и подынтегральная функция и интеграл от нее являются многозначными функциями. Поэтому после интегрирования, при подстановке численных значений, нужно выделить однозначную ветвь (риманову поверхность) подынтегральной функции, и для нее выбрать соответствующую ветвь результата интегрирования.

Дробно-линейная иррациональность

Это интегралы с корнями от одной и той же дробно-линейной функции:
,
где R - рациональная функция, - рациональные числа, m 1 , n 1 , ..., m s , n s - целые числа, α, β, γ, δ - действительные числа.
Такие интегралы сводится к интегралу от рациональной функции подстановкой:
, где n - общий знаменатель чисел r 1 , ..., r s .

Корни могут быть не обязательно от дробно-линейной функции, но и от линейной (γ = 0 , δ = 1 ), или от переменной интегрирования x (α = 1 , β = 0 , γ = 0 , δ = 1 ).

Вот примеры таких интегралов:
, .

Интегралы от дифференциальных биномов

Интегралы от дифференциальных биномов имеют вид:
,
где m, n, p - рациональные числа, a, b - действительные числа.
Такие интегралы сводятся к интегралам от рациональных функций в трех случаях.

1) Если p - целое. Подстановка x = t N , где N - общий знаменатель дробей m и n .
2) Если - целое. Подстановка a x n + b = t M , где M - знаменатель числа p .
3) Если - целое. Подстановка a + b x - n = t M , где M - знаменатель числа p .

В остальных случаях, такие интегралы не выражаются через элементарные функции.

Иногда такие интегралы можно упростить с помощью формул приведения:
;
.

Интегралы, содержащие квадратный корень из квадратного трехчлена

Такие интегралы имеют вид:
,
где R - рациональная функция. Для каждого такого интеграла имеется несколько методов решения.
1) С помощью преобразований привести к более простым интегралам.
2) Применить тригонометрические или гиперболические подстановки.
3) Применить подстановки Эйлера.

Рассмотрим эти методы более подробно.

1) Преобразование подынтегральной функции

Применяя формулу , и выполняя алгебраические преобразования, приводим подынтегральную функцию к виду:
,
где φ(x), ω(x) - рациональные функции.

I тип

Интеграл вида:
,
где P n (x) - многочлен степени n .

Такие интегралы находятся методом неопределенных коэффициентов, используя тождество:

.
Дифференцируя это уравнение и приравнивая левую и правую части, находим коэффициенты A i .

II тип

Интеграл вида:
,
где P m (x) - многочлен степени m .

Подстановкой t = (x - α) -1 этот интеграл приводится к предыдущему типу. Если m ≥ n , то у дроби следует выделить целую часть.

III тип

Здесь мы делаем подстановку:
.
После чего интеграл примет вид:
.
Далее, постоянные α, β нужно выбрать такими, чтобы в знаменателе коэффициенты при t обратились в нуль:
B = 0, B 1 = 0 .
Тогда интеграл распадается на сумму интегралов двух видов:
,
,
которые интегрируются подстановками:
u 2 = A 1 t 2 + C 1 ,
v 2 = A 1 + C 1 t -2 .

2) Тригонометрические и гиперболические подстановки

Для интегралов вида , a > 0 ,
имеем три основные подстановки:
;
;
;

Для интегралов , a > 0 ,
имеем следующие подстановки:
;
;
;

И, наконец, для интегралов , a > 0 ,
подстановки следующие:
;
;
;

3) Подстановки Эйлера

Также интегралы могут быть сведены к интегралам от рациональных функций одной из трех подстановок Эйлера:
, при a > 0 ;
, при c > 0 ;
, где x 1 - корень уравнения a x 2 + b x + c = 0 . Если это уравнение имеет действительные корни.

Эллиптические интегралы

В заключении рассмотрим интегралы вида:
,
где R - рациональная функция, . Такие интегралы называются эллиптическими. В общем виде они не выражаются через элементарные функции. Однако встречаются случаи, когда между коэффициентами A, B, C, D, E существуют соотношения, при которых такие интегралы выражаются через элементарные функции.

Ниже приводится пример, связанный с возвратными многочленами. Вычисление подобных интегралов выполняется с помощью подстановок:
.

Пример

Вычислить интеграл:
.

Решение

Делаем подстановку .

.
Здесь при x > 0 (u > 0 ) берем верхний знак ′+ ′. При x < 0 (u < 0 ) - нижний ′- ′.


.

Ответ

Использованная литература:
Н.М. Гюнтер, Р.О. Кузьмин, Сборник задач по высшей математике, «Лань», 2003.

В продолжение темы:
Программы

Основная память (ОП) - предназначена для хранения и оперативного обмена информацией со всеми блоками машины. ОП содержит два вида запоминающих устройств: постоянное...