На кремниевых транзисторах. Транзисторы отечественные биполярные

Транзистор (transistor) – полупроводниковый элемент с тремя выводами (обычно), на один из которых (коллектор ) подаётся сильный ток, а на другой (база ) подаётся слабый (управляющий ток ). При определённой силе управляющего тока,как бы «открывается клапан» и ток с коллектора начинает течь на третий вывод (эмиттер ).


То есть транзистор – это своеобразный клапан , который при определённой силе тока, резко уменьшает сопротивление и пускает ток дальше (с коллектора на эмиттер).Происходит это потому, что при определенных условиях, дырки имеющие электрон, теряют его принимая новый и так по кругу. Если к базе не прилагать электрический ток, то транзистор будет находиться в уравновешенном состоянии и не пропускать ток на эмиттер.

В современных электронных чипах, количество транзисторов исчисляется миллиардами . Используются они преимущественно для вычислений и состоят из сложных связей.

Полупроводниковые материалы, преимущественно применяемые в транзисторах это: кремний , арсенид галлия и германий . Также существуют транзисторы на углеродных нанотрубках , прозрачные для дисплеев LCD и полимерные (наиболее перспективные).

Разновидности транзисторов:

Биполярные – транзисторы в которых носителями зарядов могут быть как электроны, так и «дырки». Ток может течь, как в сторону эмиттера , так и в сторону коллектора . Для управления потоком применяются определённые токи управления.

– распротранёные устройства в которых управление электрическим потоком происходит посредством электрического поля. То есть когда образуется большее поле – больше электронов захватываются им и не могут передать заряды дальше. То есть это своеобразный вентиль, который может менять количество передаваемого заряда (если полевой транзисторс управляемым p — n переходом). Отличительной особенностью данных транзисторов являются высокое входное напряжение и высокий коэффи­циент усиления по напряжению.

Комбинированные – транзисторы с совмещёнными резисторами, либо другими транзисторами в одном корпусе. Служат для различных целей, но в основном для повышения коэффициента усиления по току.

Подтипы:

Био-транзисторы – основаны на биологических полимерах, которые можно использовать в медицине, биотехнике без вреда для живых организмов. Проводились исследования на основе металлопротеинов, хлорофилла А (полученного из шпината), вируса табачной мозаики.

Одноэлектронные транзисторы – впервые были созданы российскими учёными в 1996 году . Могли работать при комнатной температуре в отличии от предшественников. Принцип работы схож с полевым транзистором, но более тонкий. Передатчиком сигнала является один или несколько электронов. Данный транзистор также называют нано- и квантовый транзистор. С помощью данной технологии, в будущем рассчитывают создавать транзисторы с размером меньше 10 нм , на основе графена .

Для чего используются транзисторы?

Используются транзисторы в усилительных схемах , лампах , электродвигателях и других приборах где необходимо быстрое изменение силы тока или положение вкл выкл . Транзистор умеет ограничивать силу тока либо плавно , либо методом импульс пауза . Второй чаще используется для -управления. Используя мощный источник питания, он проводит его через себя, регулируя слабым током.

Если силы тока недостаточно для включения цепи транзистора, то используются несколько транзисторов с большей чувствительностью, соединённые каскадным способом.

Мощные транзисторы соединённые в один или несколько корпусов, используются в полностью цифровых усилителях на основе . Часто им требуется дополнительное охлаждение . В большинстве схем, они работают в режиме ключа (в режиме переключателя).

Применяются транзисторы также в системах питания , как цифровых, так и аналоговых (материнские платы , видеокарты , блоки питания & etc ).

Центральные процессоры , тоже состоят из миллионов и миллиардов транзисторов, соединённых в определённом порядке для специализированных вычислений .

Каждая группа транзисторов, определённым образом кодирует сигнал и передаёт его дальше на обработку. Все виды и ПЗУ памяти, тоже состоят из транзисторов.

Все достижения микроэлектроники были бы практически невозможны без изобретения и использования транзисторов. Трудно представить хоть один электронный прибор без хотя бы одного транзистора.

  • Перевод

В качестве демонстрации работоспособности концепции автор с командой создали подложки из германия на изоляторе, для создания инвертеров, содержащих сначала планарные транзисторы, а затем и FinFET-транзисторы

Почти 70 лет назад два физика из Телефонной лаборатории Белла – Джон Бардин и Уолтер Брэттейн – впрессовали два тонких золотых контакта в пластину из германия, и сделали третий контакт снизу пластины. Ток, проходивший через эту конструкцию, можно было использовать для превращения слабого сигнала в сильный. В результате появился первый транзистор – усилитель и переключатель, который, возможно, стал величайшим изобретением 20-го века. Благодаря закону Мура, транзистор развил компьютеры далеко за пределы того, что казалось возможным в 1950-е.

Несмотря на звёздную роль германия в ранней истории транзисторов, его вскоре заменили кремнием. Но сейчас, что удивительно, этот материал готов вернуться. Лидеры в производстве чипов раздумывают над заменой компонентов в самом сердце транзистора – токопроводящем канале. Идея в том, чтобы заменить кремний материалом, способным лучше проводить ток. Создание транзисторов с такими каналами может помочь инженерам продолжать улучшать показатели контуров по скорости и энергоэффективности, что будет означать появление улучшенных компьютеров, смартфонов, и множества других гаджетов в последующие годы.

Долгое время интерес к альтернативным каналам вращался вокруг соединений A III B V , таких, как арсенид галлия, состоящих из атомов, находящихся слева и справа от кремния в таблице Менделеева. И я участвовал в том исследовании. Восемь лет назад я , обозначив прогресс, сделанный в построении транзисторов на таких соединениях.


Два транзистора в инвертере на основе FinFET содержат плавниковые каналы, выделяющиеся из плоскости подложки (вверху – розовые каналы, внизу – скошенный вид на ещё один набор). Расстояния между «плавниками» вверху – десятки нанометров.

Но в результате мы обнаружили, что у подхода с A III B V существуют фундаментальные физические ограничения. А также он, скорее всего, был бы слишком дорогим и сложным для интеграции с существующей кремниевой технологией. Так что несколько лет назад моя команда в Университете Пердью начала эксперименты с другим устройством: с транзистором, канал которого выполнен из германия. С тех пор мы продемонстрировали первые контуры КМОП (комплементарная структура металл-оксид-полупроводник) . Примерно та же логика, что находится внутри современных компьютеров, только изготовленная из германия, выращенного на обычных кремниевых подложках. Мы также создали ряд различных транзисторных архитектур из этого материала. В них входят устройства из нанопроволоки, которые могут стать следующим шагом производства, когда сегодняшние лучшие транзисторы, FinFET, уже нельзя будет дальше уменьшать.

И что ещё интереснее, оказывается, что возвращать германий в работу не так сложно, как это кажется. Транзисторы, использующие комбинацию кремния и германия в канале, уже можно найти в новых чипах, и они впервые появились в 2015 году, в демонстрации будущих технологий изготовления чипов от IBM. Эти разработки могут стать первым шагом индустрии, стремящейся внедрять всё большие доли германия в каналы. Через несколько лет мы можем столкнуться с тем, что материал, подаривший нам транзисторы, помог перенести их в следующую эпоху выдающегося быстродействия.

Германий впервые изолировал и открыл немецкий химик Клеменс Уинклер в конце XIX века. Материал был назван в честь родины учёного, и всегда считался плохо проводящим ток. Это изменилось во время Второй Мировой войны, когда были открыты полупроводниковые свойства германия – то есть, возможность переключения между проведением и блокированием тока. В послевоенные годы быстро развивались полупроводниковые устройства на германии. В США производство, отвечая на запросы рынка, возросло от нескольких сотен фунтов в 1946 до 45 тонн к 1960-му году. Но кремний выиграл; он стал популярным материалом для микросхем логики и памяти.

И для доминирования кремния есть веские причины. Во-первых, его больше, и он дешевле. У кремния более широкая запрещённая зона, энергетический барьер, который нужно преодолеть для создания проводимости. Чем больше эта зона, тем сложнее току просочиться через устройство в ненужный момент и зря потратить энергию. В качестве бонуса у кремния и теплопроводность была лучше, что позволяло легче отводить тепло, чтобы контуры не перегревались.

Учитывая все преимущества, естественно заинтересоваться – зачем бы нам вообще раздумывать над возвращением германия в канал. Ответ – мобильность. Электроны в германии при комнатной температуре двигаются почти в три раза охотнее, чем в кремнии. А дырки – отсутствие электрона в материале, рассматриваемое, как положительный заряд – двигаются почти в четыре раза охотнее.


Девятиступенчатый кольцевой КМОП-осциллятор, представленный в 2015 году

То, что в германии электроны и дырки такие мобильные, делает его удобным кандидатом для КМОП-контуров. КМОП сочетает два разных типа транзисторов: p-канальные FET (pFET), канал которых содержит избыток свободных дырок, и n-канальные FET (nFET), у которых есть избыток электронов. Чем быстрее они двигаются, тем быстрее работают контуры. А уменьшение напряжения, требуемого для их передвижения, означает и уменьшение энергопотребления.

Конечно, германий – не единственный материал с такой мобильностью частиц. Упомянутые ранее составы A III B V , материалы, такие, как арсенид индия и арсенид галлия, также могут похвастаться высокой подвижностью электронов. Электроны в арсениде индия почти в 30 раз подвижнее, чем в кремнии. Но проблема в том, что это свойство не распространяется на дырки – они не сильно подвижнее тех, что есть в кремнии. И это ограничение приводит к невозможности создания высокоскоростных pFET, а отсутствие скоростных pFET сводит на нет получение быстрых КМОП-контуров, поскольку они не могут работать с очень большой разницей в скоростях работы nFETs и pFETs.

Один из вариантов решения – взять от каждого материала лучшее. Исследователи во многих лабораториях, например, Европейской организации по исследованию полупроводников Imec и Цюрихской лаборатории IBM, показали способы создания контуров, у которых каналы nFET сделаны из составов A III B V , а pFET – из германия. И хотя эта технология может позволить создавать очень быстрые контуры, она сильно усложняет производство.

Поэтому нам больше нравится простой подход с германием. Германиевые каналы должны увеличить быстродействие, а проблемы производства будут не такими серьёзными.

Как дела у германия

Чтобы германий – или любой альтернативный материал – попал в производство, необходимо найти способ добавления его на кремниевые подложки, используемые в настоящее время для изготовления чипов. К счастью, существует множество способов нанести на кремниевую подложку германиевый слой, из которого потом можно сделать каналы. Использование тонкого слоя устраняет две ключевые проблемы германия – высокая по сравнению с кремнием стоимость, и относительно плохая теплопроводность.

Но чтобы заменить кремний в транзисторе, недостаточно просто впихнуть тонкий и высококачественный слой из германия. Канал должен безупречно работать с другими компонентами транзистора.

В вездесущих современных КМОП-чипах используются транзисторы на основе МОП (металл-оксид-полупроводник – МОП-транзистор; metal-oxide-semiconductor field effect transistor - MOSFET). У него есть четыре базовых части. Исток и сток – исходная и конечная точка перемещения тока; канал, соединяющий их; затвор, служащий клапаном, контролирующим наличие тока в канале.

В реальности в качественном транзисторе присутствуют и другие ингредиенты. Один из самых важных – изолятор затвора, предотвращающий короткое замыкание затвора и канала. Атомы в полупроводниках, таких, как кремний, германий и составы A III B V , расположены в трёх измерениях. Идеально плоскую поверхность изготовить нельзя, поэтому у атомов, находящихся вверху канала, будет несколько выпирающих связей. Вам необходимо изолятор, связывающий как можно больше этих связей, и этот процесс называется пассивацией, или поверхностной протравкой. В случае некачественного изготовления можно получить канал с «электрическими выбоинами», полный таких мест, где переносчики заряда могут временно задерживаться, что понижает их подвижность и, в результате, скорость работы устройства.


Слева: nFET из составов A III B V , и pFET из германия, кусочки обеих материалов выращены на кремниевой подложке с изоляцией.
Справа: оба транзистора выполнены из германия, связанного с подложкой.

К счастью, природа снабдила кремний естественным изолятором, хорошо совпадающим с его кристаллической структурой: диоксидом кремния (SiO 2). И хотя в современных транзисторах встречаются более экзотические изоляторы, в них всё равно есть тонкий слой этого оксида, служащий для пассивации кремниевого канала. Поскольку кремний и SiO 2 близки по структуре, хорошо изготовленный слой SiO 2 связывает 99 999 из 100 000 свободных связей – а на квадратном сантиметре кремния их содержится примерно столько.

Арсенид галлия и другие составы A III B V не обладают естественным оксидами, а у германия он есть – поэтому, в теории, у него должен быть идеальный материал для пассивации канала. Проблема в том, что диоксид германия (GeO 2) слабее, чем SiO 2 , и может поглощаться и растворяться водой, используемой для очистки подложек во время изготовления чипов. Что ещё хуже, процесс роста GeO 2 сложно контролировать. Для идеального устройства требуется слой GeO 2 в 1-2 нм толщиной, но в реальности сложнее сделать слой тоньше 20 нм.

Исследователи изучали разные альтернативы. Профессор из Стэнфорда, Кришна Сарасват , и его коллеги, подстегнувшие интерес к использованию германия в качестве альтернативного материала ещё в 2000-х, сначала изучали диоксид циркония, материал с высокой диэлектрической проницаемостью того типа, что используется сегодня в высокоскоростных транзисторах. На основе их работы группа из Imec в Бельгии изучили, что можно сделать со сверхтонким слоем кремния для улучшения интерфейса между германием и подобными материалами.

Но пассивация германия была серьёзно усовершенствована в 2011 году, когда команда профессора Шиничи Такаги из Токийского университета продемонстрировала способ контроля роста германиевого изолятора. Сначала исследователи вырастили нанометровый слой ещё одного изолятора, оксида алюминия, на германиевом канале. После этого их разместили в кислородной камере. Часть кислорода прошла через слой оксида алюминия к находящемуся внизу германию, и смешалась с ним, сформировав тонкий слой оксида (соединение германия с кислородом, но технически не GeO 2). Оксид алюминия не только помогает контролировать рост, но и служит защитным покрытием для менее стабильного слоя.


Нанопроводные каналы

Несколько лет назад, вдохновившись этим открытием и учитывая сложности создания pFET с каналами из A III B V , моя группа в Пердью начала исследовать способы создания транзисторов на германиевых каналах. Мы начали с использования подложек с германием на изоляторе, разработанных французским производителем Soitec. Это стандартные кремниевые подложки с изолирующим слоем, находящимся под 100 нм слоем германия.

С этими подложками можно создавать транзисторы, у которых все стандартные части – исток, канал и сток – сделаны из германия. Производителю транзисторов не обязательно следовать такой конструкции, но нам так было проще изучать основные свойства германиевых устройств.

Одним из первых препятствий стала борьба с сопротивлением между истоком и стоком транзистора и металлическими электродами, соединяющими их с внешним миром. Сопротивление возникает из-за естественного электронного барьера Шоттки, появляющегося в месте контакта металла и полупроводника. Кремниевые транзисторы без устали оптимизировали для минимизации этого барьера, так, чтобы переносчикам заряда было легко его преодолевать. Но в германиевом устройстве требуются хитрые инженерные решения. Благодаря нюансам электронной структуры дырки легко перемещаются из металла в германий, а вот электроны – не очень. Это значит, что у nFET, полагающихся на передвижения электронов, будет очень большое сопротивление, потери тепла и тока.

Стандартный способ сделать барьер тоньше – добавить больше легирующей примеси к истоку и стоку. Физика процесса сложна, но представить её можно так: больше атомов примеси привносят больше свободных зарядов. При изобилии свободных переносчиков заряда электрическое взаимодействие между металлическими электродами и полупроводниковыми истоком и стоком усиливается. Это и помогает усиливать туннельный эффект.

К сожалению, с германием такая технология работает хуже, чем с кремнием. Материал не выдерживает больших концентраций легирующих примесей. Но мы можем использовать те места, где плотность примесей максимальна.

Для этого воспользуемся тем, что в современные полупроводники примеси добавляются сверхвысокими электрическими полями, заталкивающими ионы в материал. Некоторые из этих атомов сразу останавливаются, иные же проникают глубже. В результате вы получите нормальное распределение: концентрация атомов примесей на некоторой глубине будет максимальной, а затем при перемещении вглубь или в обратном направлении будет уменьшаться. Если мы заглубим электроды истока и стока в полупроводник, мы можем поместить их в места наивысшей концентрации атомов примеси. Это кардинально уменьшает проблему сопротивления контактов.


Контакты погружаются на глубину максимальной концентрации атомов примесей

Вне зависимости от того, будут ли производители чипов использовать такой подход для уменьшения барьера Шоттки в германии, это полезная демонстрация его возможностей. В начале нашего исследования лучшее, что показывали германиевые nFET, это токи в 100 мкА на каждый мкм ширины. В 2014 году на симпозиуме VLSI Technology and Circuits на Гавайях мы сообщили о германиевых nFET, способных пропускать уже в 10 раз больше тока, что примерно сравнимо с кремнием. Через шесть месяцев мы продемонстрировали первые контуры, содержащие германиевые nFET и pFET, необходимое предварительное условие для изготовления современных логических микросхем.

С тех пор мы использовали германий для постройки более продвинутых транзисторов, таких, как FinFET – современный уровень техники. Мы даже делали нанопроводные транзисторы на германии, которые в ближайшие годы могут заменить FinFET.

Эти разработки потребуются для того, чтобы германий стали использовать в массовом производстве, поскольку с их помощью можно лучше контролировать канал транзистора. Благодаря небольшой запрещённой зоне германия, такой транзистор требует всего четверти энергии, необходимой для переключения в проводящее состояние кремниевого транзистора. Это открывает возможности для низкоэнергетической работы, но это же делает более вероятной и утечку тока в то время, когда он этого делать не должен. Устройство с лучшим контролем над каналом позволит изготовителям использовать малую запрещённую зону без компромиссов с быстродействием.

Мы взяли хороший старт, но у нас ещё есть работа. Например, необходимы дополнительные эксперименты с подложками, которые должны показать транзисторы с высококачественными германиевыми каналами. Также необходимо внести улучшения в дизайн для ускорения.

Конечно, германий – не единственный вариант для транзисторов будущего. Исследователи продолжают изучать составы A III B V , которые можно использовать как вместе с германием, так и обособленно. Количество возможных улучшений транзисторов огромно. В этот список входят транзисторы на углеродных нанотрубках , вертикально ориентированные переключатели, трёхмерные контуры, каналы из смеси германия и олова, транзисторы, основанные на принципе квантового туннелирования.

В ближайшие годы, возможно, мы адаптируем какие-то из перечисленных технологий. Но добавление германия – даже в смеси с кремнием – это решение, которое позволит производителям продолжать улучшение транзисторов уже в ближайшем будущем. Германий, изначальный материал эры полупроводников, может стать панацеей её следующего десятилетия.

Теги:

  • транзисторы
  • германий
Добавить метки

Транзистор — это полупроводниковый прибор, предназначенный для усиления, инвертирования , преобразования электрических сигналов , а также переключения электрических импульсов в электронных цепях различных устройств. Различают биполярные транзисторы , в которых используются кристаллы n- и p- типа, и полевые (униполярные) транзисторы , изготовленные на кристалле германия или кремния с одним типом проводимости.

Биполярные транзисторы

Физические процессы в транзисторах p-n-p- типа и n-p-n- типа одинаковы. Отличие их в том, что токи в базах транзисторов p-n-p- типа переносятся основными носителями зарядов — дырками, а в транзисторах n-p-n -типа — электронами.

Каждый из переходов транзистора — эмиттерный (Б-Э ) и коллекторный (Б-К ) можно включить либо в прямом, либо в обратном направлении. В зависимости от этого различают три режима работы транзистора:

  • режим отсечки — оба p-n- перехода закрыты, при этом через транзистор протекает сравнительно небольшой ток I 0 , обусловленный неосновными носителями зарядов;
  • режим насыщения — оба p-n -перехода открыты;
  • активный режим — один из p-n -переходов открыт, а другой закрыт.

В режимах отсечки и насыщения управление транзистором практически отсутствует. В активном режиме транзистор выполняет функцию активного элемента электрических схем усиления сигналов, генерирования колебаний, переключения и т. п.

Если на эмиттерном переходе напряжение прямое, а на коллекторном обратное, то такое включение транзистора считают нормальным, при противоположной полярности напряжений — инверсным.

Подав отрицательный потенциал ЭДС источника на коллектор и положительный на эмиттер (рис. 21) в схеме включения транзистора с общим эмиттером, мы, тем самым, открыли эмиттерный переход Э -Б и закрыли коллекторный Б -К , при этом ток коллектора I К0 = I Э0 = I 0 мал, он определяется концентрацией неосновных носителей (электронов в данном случае). Если между эмиттером и базой приложить небольшое напряжение (0,3-0,5 В) в прямом направлении p-n -перехода Э -Б , то происходит инжекция дырок из эмиттера в базу, образуя ток эмиттера - I . В базе дырки частично рекомбинируют со свободными электронами, но одновременно от внешнего источника напряжения Е Б (Е Б < Е R) в базу приходят новые электроны, образуя ток базы I Б .


Рисунок 21-Схема включения биполярного транзистора

Так как база в транзисторе выполняется в виде тонкого слоя, то только незначительная часть дырок рекомбинирует с электронами базы, а основная их часть достигает коллекторного перехода. Эти дырки захватываются электрическим полем коллекторного перехода, являющегося ускоряющим для дырок. Ток дырок, попавших из эмиттера в коллектор, замыкается через резистор R K и источник напряжения с ЭДС Е K , образуя ток коллектора I К во внешней цепи.

Запишем соотношение токов в схеме включения транзистора (рис. 21), называемой схемой включения с общим эмиттером (ОЭ),

Отношение тока коллектора к току эмиттера называют коэффициентом передачи тока

откуда ток базы

Схема включения транзистора с ОЭ является наиболее распространенной вследствие малого тока базы во входной цепи и усиления входного сигнала как по напряжению, так и по току. Основные свойства транзистора определяются соотношениями токов и напряжений в различных его цепях и взаимным их влиянием друг на друга.

Транзистор может работать на постоянном токе, малом переменном сигнале, большом переменном сигнале и в ключевом (импульсном) режиме.

Семейства входных

и выходных

статических характеристик транзистора в схеме с ОЭ представлены на рис. 22. Они могут быть получены в результате эксперимента или расчёта.

Рисунок 22 - Семейства входных и выходных статических характеристик

Семейства характеристик, которые связывают напряжения и токи на выходе с токами и напряжениями на входе, называют характеристиками передачи или управляющими характеристиками (рис 23).

Рисунок 23-Характеристика передачи

Биполярные транзисторы классифицируют:

  • по мощности рассеяния (маломощные (до 0,3 Вт), средней мощности (от 0,3 Вт до 1,5 Вт) и мощные (свыше 1,5 Вт));
  • по частотным свойствам (низкочастотные (до 3 МГц), средней частоты (3_30 МГц), высокой (30_300 МГц) и сверхвысокой частоты (более 300 МГц));
  • по назначению: универсальные, усилительные, генераторные, переключательные и импульсные.

При маркировке биполярных транзисторов вначале записывают букву или цифру, указывающую на исходный полупроводниковый материал: Г или 1 — германиевый, К или 2 — кремниевый; затем цифру от 1 до 9 (1, 2 или 3 — низкочастотные, 4, 5 или 6 — высокой частоты, 7, 8 или 9 — сверхвысокой частоты соответственно в каждой группе малой, средней или большой мощности). Следующие две цифры от 01 до 99 —порядковый номер разработки, а в конце буква (от А и выше) указывает на параметрическую группу прибора, например, на напряжение питания транзистора и т. п.

Например, транзистор ГТ109Г: низкочастотный германиевый, малой мощности с коэффициентом передачи тока h 21Э = 100_250, U К = 6 В, I К = 20 мА (ток постоянный).

Полевой транзистор

Полевой транзистор — это полупроводниковый прибор, в котором ток стока (С ) через полупроводниковый канал п- или р -типа управляется электрическим полем, возникающим при приложении напряжения между затвором (З ) и истоком (И ).

Полевые транзисторы изготавливают:

- с управляющим затвором типа p-n-перехода для использования в высокочастотных (до 12_18 ГГц) преобразовательных устройствах. Условное их обозначение на схемах приведено на рис. 24, а , б ;

- с изолированным (слоем диэлектрика) затвором для использования в устройствах, работающих с частотой до 1_2 ГГц. Их изготавливают или со встроенным каналом в виде МДП_структуры (см. их условное обозначение на рис. 24, в и г ), или с индуцированным каналом в виде МОП_структуры (см. их условное обозначение на рис. 24, д , е ).

Рисунок 24-Виды полевых транзисторов

Схема включения полевого транзистора с затвором типа p-n- перехода и каналом n -типа, его семейство выходных характеристик I С = f (), U З = const и стокозатворная характеристика I C = f (), U С = const изображены на рис. 25.

Рисунок 25 - Схема включения полевого транзистора и его стокозатворной характеристикой

При подключении выходов стока С и истока И к источнику питания Un по каналу n - типа протекает ток I C , так как p-n- переход не перекрывает сечение канала (рис. 25, а ).

При этом электрод, из которого в канал входят носители заряда, называют истоком , а электрод, через который из канала уходят основные носители заряда, называют стоком .

Электрод, служащий для регулирования поперечного сечения канала, называют затвором . С увеличением обратного напряжения U З уменьшается сечение канала, его сопротивление увеличивается, и уменьшается ток стока I C .

Итак, управление током стока I C происходит при подаче обратного напряжения на p-n -переход затвора З . В связи с малостью обратных токов в цепи затвор-исток, мощность, необходимая для управления током стока, оказывается ничтожно малой.

При напряжении -U З = -U ЗО , называемым напряжением отсечки , сечение канала полностью перекрывается обеднённым носителями заряда барьерным слоем, и ток стока I CО (ток отсечки) определяется неосновными носителями заряда p-n -перехода (см. рис. 25, б ).

Схематичная структура полевого транзистора с индуцированным n- каналом представлена на рис 26. При напряжении на затворе относительно истока, равным нулю, и при наличии напряжения на стоке, ток стока оказывается ничтожно малым. Заметный ток стока появляется только при подаче на затвор напряжения положительной полярности относительно истока, больше так называемого порогового напряжения U ЗПОР .

Рисунок 26-Схематичная структура полевого транзистора с индуцированным n-каналом

При этом в результате проникновения электрического поля через диэлектрический слой в полупроводник при напряжениях на затворе, больших U ЗПОР , у поверхности полупроводника под затвором возникает инверсный слой, который и является каналом, соединяющим исток со стоком.

Толщина и поперечное сечение канала изменяются с изменением напряжения на затворе, соответственно будет изменяться ток стока. Так происходит управление тока стока в полевом транзисторе с индуцированным затвором. Важнейшей особенностью полевых транзисторов является высокое входное сопротивление (порядка нескольких мегаом) и малый входной ток. Одним из основных параметров полевых транзисторов является крутизна S стоко-затворной характеристики (см. рис. 25, в ). Например, для полевого транзистора типа КП103Ж S = (3...5) мА/В.

В конце позапрошлого века немецкий химик К.А. Винклер открыл элемент, существование которого заранее было предсказано Д.И. Менделеевым. А 1 июля 1948 г. в подвале газеты «Нью-Йорк Таймс» появилась короткая заметка под заголовком «Создание транзистора». В ней сообщалось об изобретении «электронного прибора, способного заменить в радиотехнике обычные электровакуумные лампы».

Разумеется, первые транзисторы были германиевыми, и именно этот элемент произвел настоящий переворот в радиотехнике. Не будем спорить, выиграли ли ценители музыки при переходе от ламп к транзисторам - дискуссии эти уже успели порядком поднадоесть. Давайте лучше зададим себе другой, не менее актуальный вопрос: пошел ли на пользу звуку следующий виток эволюции, когда кремниевые приборы пришли на смену германиевым? Век последних был недолог, и они не оставили после себя, подобно лампам, ощутимого звукового наследия. Сейчас германиевые транзисторы не выпускаются ни в одной стране, и о них уже вспоминают крайне редко. А зря. Я считаю, что любой кремниевый транзистор, будь он биполярный или полевой, высокочастотный или низкочастотный, малосигнальный или мощный, менее пригоден для высококачественного звуковоспроизведения, чем германиевый. Для начала давайте рассмотрим физические свойства обоих элементов.*

* Публикуется по H.J.Fisher, Transistortechnik fur Den Funkamateur. Перевод А.В. Безрукова, М., МРБ, 1966.

Свойства Германий Кремний
Плотность, г/см 3 5,323 2,330
Атомный вес 72,60 28,08
Количество атомов в 1 см 3 4,42*10 22 4,96*10 22
Ширина запрещенной зоны, ЭВ 0,72 1,1
Диэлектрическая постоянная 16 12
Температура плавления, °С 937,2 1420
Теплопроводность, кал/см X сек X град 0,14 0,20
Подвижность электронов, см 2 /сек*В 3800 1300
Подвижность дырок, см 2 /сек*В 1800 500
Продолжительность жизни электрона, мксек 100 - 1000 50 - 500
Длина свободного пробега электрона, см 0,3 0,1
Длина свободного пробега дырки, см 0,07 - 0,02 0,02 - 0,06

Из таблицы видно, что подвижность электронов и дырок, продолжительность жизни электронов, а также длина свободного пробега электронов и дырок значительно выше у германия, а ширина запрещенной зоны ниже, чем у кремния. Известно также, что падение напряжения на переходе p-n составляет 0,1 - 0,3 В, а на n-p - 0, 6 - 0,7 В, из чего можно сделать вывод, что германий является гораздо лучшим «проводником», чем кремний, а следовательно, и каскад усиления на транзисторе p-n-p имеет значительно меньшие потери звуковой энергии, чем аналогичный на n-p-n. Возникает вопрос: почему же выпуск германиевых полупроводников был прекращен? Прежде всего потому, что по некоторым критериям Si намного предпочтительнее, поскольку может работать при температуре до 150 град. (Ge - 85), да и частотные свойства у него несравненно лучше. Вторая причина чисто экономическая. Запасы кремния на планете практически безграничны, в то время как германий - довольно редкий элемент, технология получения и очистки которого значительно дороже.

Между тем, для применения в домашней аудиотехнике упомянутые преимущества кремния абсолютно неочевидны, а свойства германия, наоборот, крайне привлекательны. Кроме того, в нашей стране германиевых транзисторов хоть завались, да и цены на них просто смешные.**

** Предвижу, что после выхода этой статьи цены на радиорынках могут подскочить, как это уже произошло с некоторыми типами ламп и микросхем - Прим. ред.

Итак, приступим к рассмотрению схем усилителей на германиевых полупроводниках. Но сначала несколько принципов, соблюдение которых исключительно важно для получения действительно высокого качества звучания.

  1. В схеме усилителя не должно быть ни одного кремниевого полупроводника.
  2. Монтаж производится объемным навесным способом, с максимальным использованием выводов самих деталей. Печатные платы значительно ухудшают звучание.
  3. Количество транзисторов в усилителе должно быть минимально возможным.
  4. Транзисторы следует отбирать попарно не только для верхнего и нижнего плеча выходного каскада, но и для обоих каналов. Стало быть, придется отобрать по 4 экземпляра с возможно близкими значениями h21э (не менее 100) и минимальным Iко.
  5. Сердечник силового трансформатора изготавливается из пластин Ш с сечением не менее 15 см 2 . Очень желательно предусмотреть экранную обмотку, которую следует заземлить.

Схема №1, минималистская

Принцип не нов, такая схемотехника была весьма популярна в шестидесятые годы. На мой взгляд, это чуть ли не единственная конфигурация бестрансформаторного усилителя, соответствующая аудиофильским канонам. Благодаря своей простоте позволяет добиться высокого качества звучания при минимальных затратах. Автором она была лишь адаптирована к современным требованиям High End Audio.

Настройка усилителя весьма проста. Сначала устанавливаем резистором R2 половину напряжения питания на «минусе» конденсатора С7. Затем подбираем R13 так, чтобы миллиамперметр, включенный в коллекторную цепь выходных транзисторов, показал ток покоя 40 - 50 мА, не больше. При подаче сигнала на вход следует убедиться в отсутствии самовозбуждения, хотя оно и маловероятно. Если все же на экране осциллографа заметны признаки ВЧ-генерации, попробуйте увеличить емкость конденсатора С5. Для устойчивой работы усилителя при изменении температуры диоды VD1, 2, должны быть смазаны теплопроводной пастой и прижаты к одному из выходных транзисторов. Последние устанавливаются на теплоотводах площадью не менее 200 см 2 .

Схема №2, усовершенствованная

В первой схеме был квазикомплементарный выходной каскад, поскольку промышленность 40 лет назад не выпускала мощных германиевых транзисторов со структурой n-p-n. Комплементарные пары ГТ703 (p-n-p) и ГТ705 (n-p-n) появились лишь в 70-х, что позволило усовершенствовать схему выходного каскада. Но мир далек от совершенства - у перечисленных выше типов максимальный ток коллектора всего 3,5 А (у П217В Iк max = 7,5 A). Поэтому применить их в схеме можно, лишь поставив по два в плечо. Этим, собственно, и отличается №2, разве что полярность блока питания противоположна. И усилитель напряжения (VT1), соответственно, реализован на транзисторе другой проводимости.

Настраивается схема точно так же, даже ток покоя выходного каскада такой же.

Коротко о блоке питания

Для получения высокого качества звучания придется поискать в закромах 4 германиевых диода Д305. Другие категорически не рекомендуются. Соединяем их мостом, шунтируем слюдой КСО по 0,01 мкФ, а затем ставим 8 конденсаторов 1000 мкФ X 63 В (те же К50-29 или Philips), которые тоже шунтируем слюдой. Наращивать емкость не надо - тональный баланс уходит вниз, теряется воздух.

Параметры обеих схем примерно одинаковы: выходная мощность 20 Вт на нагрузке 4 Ом при искажениях 0,1 - 0,2%. Разумеется, эти цифры мало что говорят о звучании. Уверен в одном - послушав грамотно сделанный по одной из этих схем усилитель, вы вряд ли вернетесь к кремниевым транзисторам.

Апрель 2003 г.

От редакции:

Мы послушали у Жана прототип первого варианта усилителя. Первое впечатление - необычно. Звучание отчасти транзисторное (хороший контроль нагрузки, четкий бас, убедительный драйв), отчасти ламповое (отсутствие жесткости, воздух, деликатность, если хотите). Усилитель заводит, но не раздражает назойливостью. Мощности хватает, чтобы без малейших признаков клиппинга раскачать до невыносимой громкости напольную акустику с чувствительностью 90 дБ. Что интересно - тональный баланс на разных уровнях почти не меняется.

Это результат продуманной конструкции и тщательно подобранных деталей. Учитывая, что комплект транзисторов обойдется рублей в пятьдесят (хотя, если не очень повезет, для подбора пар может потребоваться несколько десятков, смотря какая партия попадется), не экономьте на других элементах, особенно конденсаторах.

Буквально за пару часов на макетной плате был собран один канал усилителя для анализа схемы. На выходе устанавливались американские германиевые транзисторы Altec AU108 с граничной частотой 3 МГц. При этом полоса пропускания по уровню 0,5 дБ была 10 Гц - 27 кГц, искажения на мощности 15 Вт примерно 0,2%. Доминировала 3-я гармоника, но наблюдались выбросы и более высоких порядков, вплоть до 11-го. С транзисторами ГТ-705Д (Fгр. = 10 кГц) ситуация была несколько иной: полоса сузилась до 18 кГц, зато гармоник выше 5-й на экране анализатора вообще не было видно. Изменилось и звучание - оно как-то потеплело, смягчилось, но искрящееся прежде «серебро» поблекло. Так что первый вариант можно рекомендовать для акустики с «мягкими» пищалками, а второй - с титановыми или пьезоизлучателями. Характер искажений зависит от качества конденсаторов С7 и С6 на схемах 1 и 2 соответственно. А вот их шунтирование слюдой и пленкой не очень заметно на слух.

К недостаткам схемы следует отнести малое входное сопротивление (около 2 кОм в верхнем положении регулятора громкости), которое может перегрузить выходной буфер источника сигнала. Второй момент - уровень искажений сильно зависит от характеристик и режима первого транзистора. Чтобы повысить линейность входного каскада, имеет смысл ввести две вольт-добавки для питания коллекторной и эмиттерной цепи T1 . Для этого делаются два дополнительных независимых стабилизатора с выходным напряжением 3 В. «Плюс» одного соединяется с шиной питания - 40 В (все пояснения даются для схемы 1, для другой схемы полярность меняется на противоположную), а «минус» подается на верхний вывод R4. Резистор R7 и конденсатор C6 из схемы исключаются. Второй источник включается так: «минус» на землю, а «плюс» - на нижние выводы резисторов R3 и R6. Конденсатор C4 при этом остается между эмиттером и землей. Возможно, стоит поэкспериментировать со стабилизированным питанием. Любые изменения в питании и самой схеме усилителя радикально влияют на звук, что открывает широкие возможности для твикинга.

Таблица 1. Детали усилителя
Сопротивления
R1 10k переменное, ALPS тип A
R2 68k подстроечное CП4-1
R3 3k9 1/4 w ВС, С1-4
R4 200 1/4 w -//-
R5 2k 1/4 w -//-
R6 100 1/4 w -//-
R7 47 1 w -//-
R8,R9 39 1 w -//-
R10, R11 1 5 w проволочные, С5 - 16МВ
R12 10k 1/4 w ВС, С1-4
R13 20 1/4 w -//- подбирается при настройке
Конденсаторы
С1 47 мкФ х 16 В К50-29, Philips
С2 100 мкФ х 63 В -//-
С3 1000 пФ КСО, СГМ
С4 220 мкФ х 16 В К50-29, Philips
С5 330 пФ
С6 1000 мкФ х 63 В К50-29, Philips
С7 4 х 1000 мкФ х 63 В -//-
Полупроводники
VD1, VD2 Д311
VT1, VT2 ГТ402Г
VT3 ГТ404Г
VT4, VT5 П214В
Таблица 2. Детали усилителя
Сопротивления
R1 10k переменное, ALPS тип A
R2 68k подстроечное, CП4-1
R3 3k9 1/4 w ВС, С1-4
R4 200 1/4 w -//-
R5 2k 1/4 w -//-
R6 100 1/4 w -//-
R7 47 1 w -//-
R8 20 1/4 w -//-, подбирается при настройке
R9 82 1 w -//-
R10 - R13 2 5 w проволочные, С5 - 16МВ
R14 10k 1/4 w ВС, С1-4
Конденсаторы
С1 47 мкФ х 16 В К50-29, Philips
С2 100 мкФ х 63 В -//-
С3 1000 мкФ х 63 В К50-29, Philips
С4 1000 пФ КСО, СГМ
С5 220 мкФ х 16 В К50-29, Philips
С6 4 х 1000 мкФ х 63 В -//-
С7 330 пФ КСО, СГМ, подбирается при настройке
Полупроводники
VD1, VD2 Д311
VT1, VT2 ГТ404Г
VT3 ГТ402Г
VT4, VT6 ГТ705Д
VT5, VT7 ГТ703Д

Во всех сменных блоках приемника и в их возможных вариантах ис­пользовались только германиевые транзисторы в основном структуры p-n-p. Лишь в двухтактном выходном каскаде бестрансформаторного усилителя звуковой частоты (блок 5) один из его транзисторов был структуры n-p-n. Германиевые транзисторы давно завоевали популярность у радиолюбителей и широко ис­пользуются ими в конструируемой аппаратуре. К тому же цены на них за по­следнее время значительно снижены, они почти всегда бывают в магазинах радиотоваров, на торговых базах Посылторга и Центросоюза, откуда их можно выписать по почте.

Но на сегодняшний день германиевые транзисторы как неперспективные все больше уступают свое место в радиоаппаратуре, в том числе и любительской, кремниевым транзисторам. Объясняется это тем, что приборы и устройства на кремниевых транзисторах работают в различных условиях стабильнее. К этому можно добавить, что выпуск кремниевых транзисторов все время расширяется, а германиевых сокращается.

В связи с этим у вас может возникнуть вопрос: можно ли в сменных бло­ках описанного приемника германиевые транзисторы заменить кремниевыми? Можно, но, разумеется, с учетом некоторых их особенностей.

Наиболее характерной особенностью кремниевых транзисторов является более высокое напряжение смещения, при котором они открываются. Германие­вые транзисторы, как вам известно, открываются при напряжении на эмиттер-ном р-п переходе 0,1… 0,2 В, а кремниевые при напряжении 0,6… 0,7 В. Это значит, что на базе кремниевого транзистора, работающего в режиме усиле­ния, относительно эмиттера должно быть не менее 0,6 В. При более низком на­пряжении смещения кремниевый транзистор будет искажать усиливаемый сиг­нал. Такой исходный режим работы кремниевого транзистора устанавливают, как и германиевого, соответствующим подбором номинала резистора в базо­вой цепи.

Рис. 47. Схема усилителя звуковой частоты (блок 6) на кремние­вых транзисторах

Большая часть кремниевых транзисторов имеет структуру n-p-n. Это зна­чит, что заменяя в блоках германиевые p-n-p транзисторы на кремниевые n-p-n транзисторы надо изменить не только полярность источника питания, но и по­лярность включения электролитических конденсаторов.

Вот, собственно, то основное, что надо иметь в виду при замене германие­вых транзисторов кремниевыми. Что же касается построения принципиальных схем блоков, напряжений источников питания, то они в основном не претерпе­вают изменений.

Для примера на рис. 47 приведена схема блока 6 - то же бестрансформа­торного усилителя звуковой частоты, но на кремниевых транзисторах. Чем она отличается от схемы блока на германиевых транзисторах (см. рис. 38)? Главным образом полярностью включения источника питания и элект­ролитических конденсаторов. Транзисторы 6 V1, 6 V2 и 6 V3 - n-p-n, 6 V4 - p-n-p, Режим работы транзистора 6 V1 устанавливают подбором резистора 6 R1. На­пряжение в точке соединения эмиттеров транзисторов 6 V3 и 6 V4 (точка сим­метрии двухтактного выходного каскада), равное половине напряжения источ­ника питания, устанавливают подбором резистора 6 R4, а ток коллекторной це­пи транзистора 6 V3, равный 3… 4 мА, подбором резистора 6 R7.

Обращаем внимание на включение резистора 6 R6 и динамической головки 1В1. В описанном 1 ! блоке на германиевых транзисторах такой резистор был под­ключен непосредственно к отрицательному, а головка к положительному про­водникам источника питания. И здесь головка подключена к положительному проводнику источника питания, поэтому изменилась полярность включения электролитического конденсатора 6С5, а резистор 6 R6 подключен к точке со­единения головки с этим конденсатором. При таком способе включений этого резистора через него из выходной цепи в базовую цепь транзисторов выходно­го каскада подается так называемая вольтодобавка - небольшое напряжение звуковой частоты, выравнивающее условия работы транзисторов.

Во всех блоках вместо высокочастотных и низкочастотных маломощных p-n-p транзисторов лучше всего использовать n-p-n транзисторы серии КТ315 со статическим коэффициентом передачи тока 80… 100, вместо n-p-n транзистора в блоке 6 (МП37) - p-n-p транзистор из серии КТ361. В выходном каскаде усилителя звуковой частоты повышенной мощности (рис. 40) p-n-p транзисторы-П602 можно заменить n-p-n транзисторами К.Т601, КТ602, КТ603 с любым? буквенным индексом.

Прежде чем начать монтаж того или иного блока, прокорректируйте его принципиальную схему с учетом приведенных здесь рекомендаций. Это преду­предит ошибки и даже возможную порчу транзисторов.

В продолжение темы:
Устройства

Мы с Вами познакомились с основными компьютерными терминами и определениями. Практически изучили назначение всех (почти) клавиш на клавиатуре конкретно на примерах. Не...

Новые статьи
/
Популярные