Светодиодная лампа: устройство и принцип работы. Полезная информация о светодиодных приборах

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Сегодня я решил рассказать Вам об устройстве светодиодной лампы EKF серии FLL-A мощностью 9 (Вт).

Эту лампу я сравнивал в своих экспериментах ( , ) с лампой накаливания и компактной люминесцентной лампой (КЛЛ), и по многим показателям она имела явные преимущества.

А теперь давайте разберем ее и посмотрим, что же находится внутри. Думаю, что Вам будет не менее интересно, чем мне.

Итак, устройство современных светодиодных ламп состоит из следующих компонентов:

  • рассеиватель
  • плата со светодиодами (кластер)
  • радиатор (в зависимости от модели и мощности лампы)
  • источник питания светодиодов (драйвер)
  • цоколь

А теперь рассмотрим каждый компонент в отдельности по мере разбора лампы EKF.

У рассматриваемой лампы используется стандартный цоколь Е27. Он крепится к корпусу лампы с помощью точечных углублений (кернений) по окружности. Чтобы снять цоколь, нужно высверлить места кернения или сделать пропил ножовкой.

Красный провод соединяется с центральным контактом цоколя, а черный — припаян к резьбе.

Питающие провода (черный и красный) очень короткие, и если Вы разбираете светодиодную лампу для ремонта, то это нужно учесть и запастись проводами для их дальнейшего наращивания.

Через открывшееся отверстие виден драйвер, который крепится с помощью силикона к корпусу лампы. Но извлечь его можно только со стороны рассеивателя.

Драйвер — это источник питания светодиодной платы (кластера). Он преобразовывает переменное напряжение сети 220 (В) в источник постоянного тока. Для драйверов свойственны параметры мощности и выходного тока.

Существует несколько разновидностей схем источников питания для светодиодов.

Самые простые схемы выполняются на резисторе, который ограничивает ток светодиода. В этом случае нужно лишь правильно выбрать сопротивление резистора. Такие схемы питания чаще всего встречаются в выключателях со светодиодной подсветкой. Это фото я взял из статьи, в которой рассказывал о .

Схемы чуть посложнее выполняются на диодном мосте (мостовая схема выпрямления), с выхода которого выпрямленное напряжение подается на последовательно-включенные светодиоды. На выходе диодного моста также установлен электролитический конденсатор для сглаживания пульсаций выпрямленного напряжения.

В перечисленных выше схемах нет гальванической развязки с первичным напряжением сети, они обладают низким КПД и большим коэффициентом пульсаций. Их главное преимущество заключается в простоте ремонта, низкой стоимости и малых габаритах.

В современных светодиодных лампах чаще всего применяются драйверы, выполненные на основе импульсного преобразователя. Их главные достоинства — это высокий КПД и минимум пульсаций. Зато они по стоимости в несколько раз дороже предыдущих.

Кстати, в скором времени я планирую провести замеры коэффициентов пульсаций светодиодных и люминесцентных ламп различных производителей. Чтобы не пропустить выход новых статей — подписывайтесь на рассылку.

В рассматриваемой светодиодной лампе EKF установлен драйвер на микросхеме BP2832A.

Драйвер крепится к корпусу с помощью силиконовой пасты.

Чтобы добраться до драйвера, мне пришлось отпилить рассеиватель и вынуть плату со светодиодами.

Красный и черный провода — это питание 220 (В) с цоколя лампы, а бесцветные — это питание на плату светодиодов.

Вот типовая схема драйвера на микросхеме BP2832A, взятая из паспорта. Там же Вы можете ознакомиться с ее параметрами и техническими характеристиками.

Рабочий режим драйвера находится в пределах от 85 (В) до 265 (В) напряжения сети, в нем имеется защита от короткого замыкания, применяются электролитические конденсаторы, предназначенные для продолжительной работы при высоких температурах (до 105°С).

Корпус светодиодной лампы EKF выполнен из алюминия и теплорассеивающего пластика, который обеспечивает хороший отвод тепла, а значит увеличивает срок службы светодиодов и драйвера (по паспорту заявлено до 40000 часов).

Максимальная температура нагрева этой LED-лампы составляет 65°С. Об этом читайте в экспериментах (ссылки я указал в самом начале статьи).

У более мощных светодиодных ламп, для лучшего отвода тепла, имеется радиатор, который крепится к алюминиевой плате светодиодов через слой термопасты.

Рассеиватель выполнен из пластика (поликарбоната) и с помощью него достигается равномерное рассеивание светового потока.

А вот свечение без рассеивателя.

Ну вот мы добрались до платы светодиодов или другими словами, кластера.

На круглой алюминиевой пластине (для лучшего отвода тепла) через слой изоляции размещено 28 светодиодов типа SMD.

Светодиоды соединены в две параллельные ветви по 14 светодиодов в каждой ветви. Светодиоды в каждой ветви соединяются между собой последовательно. Если сгорит хоть один светодиод, то не будет гореть вся ветвь, но при этом вторая ветвь останется в работе.

А вот видео, снятое по материалам данной статьи:

P.S. В завершении статьи хочется отметить то, что конструкция LED-лампы EKF с точки зрения ремонта не очень удачная, лампу невозможно разобрать без отпиливания рассеивателя и высверливания цоколя.

Уже на протяжении многих лет мы применяли обычные лампы накаливания для освещения дома, квартиры, офиса или промышленного предприятия. Однако с каждым днем цены на электроэнергию стремительно растут, что заставляет нас отдавать предпочтение более энергоэффективным устройствам, обладающим высоким КПД, длительным сроком службы и способными создавать необходимый световой поток с минимальными затратами. Именно к таким устройствам относятся светодиодные лампы на 220 вольт, преимущества которых мы постараемся раскрыть в полном объеме в данной статье.

Внимание! В этой публикации приводятся примеры схем, с питанием от опасного для жизни напряжения 220В. Собирать и испытывать такие схемы разрешается только лицам, имеющим необходимое образование и допуски!

Самая простая схема

Светодиодная лампа на 220 В - это одна из разновидностей ламп освещения, световой поток в которой создается за счет преобразования электрической энергии в световой поток с помощью кристалла светодиода. Для работы светодиодов от стационарной бытовой сети 220 В необходимо собрать самую простейшую схему, изображенную ниже на рисунке.

Схема светодиодной лампы на 220 вольт состоит из источника переменного напряжения 220–240 В, выпрямительного моста для преобразования переменного тока в постоянный, ограничительного конденсатора С1, конденсатора для сглаживания пульсаций С2 и светодиодов, подключаемых последовательно от 1-го до 80 штук.

Принцип работы

При подаче переменного напряжения 220 В переменной частоты (50 Гц) на драйвер светодиодной лампы, оно проходит через токоограничивающий конденсатор С1 на выпрямительный мост, собранный из 4-х диодов.

После этого на выходе моста мы получаем постоянное выпрямленное напряжение, требующееся для работы светодиодов. Однако для получения непрерывного светового потока, в драйвер необходимо добавить электролитический конденсатор C2 для сглаживания пульсаций, возникающих при выпрямлении переменного напряжения.

Глядя на устройство светодиодной лампы на 220 вольт, мы видим, что там присутствуют сопротивления R1 и R2. Резистор R2 служит для разрядки конденсатора для защиты от пробоя при выключенном питании, а R1 - для ограничения тока, подаваемого на светодиодный мост при включении.

Схема с дополнительной защитой

Также в некоторых схемах есть дополнительное сопротивление R3, расположенное последовательно светодиодам. Оно служит для защиты от бросков тока в цепях светодиодов. Цепочка R3-C2 представляет классический фильтр низкой частоты (НЧ).

Схема с активным ограничителем тока

В этом варианте схемы ограничивающим ток элементом является сопротивление R1. Такая схема будет иметь показатель коэффициента мощности или cos φ близкий к единице, в отличие от предыдущих вариантов с токоограничивающим конденсатором, представляющих из себя реактивную нагрузку. Недостаток такого варианта в необходимости рассеивать значительное количество тепла на резисторе R1.

Для разрядки остаточного напряжения конденсатора C1 до нуля в схеме применен резистор R2.

Устройство светодиодных ламп для цепей переменного тока напряжением 220В

Светодиодные лампочки состоят из следующих компонентов:

  1. Цоколя (Е27, Е14, Е40 и так далее) для вкручивания в патрон светильника, бра или люстры;
  2. Диэлектрической прокладки между цоколем и корпусом;
  3. Драйвера, на котором собрана схема для преобразования переменного напряжения в постоянного необходимой величины;
  4. Радиатора, который служит для отвода тепла от светодиодов;
  5. Печатной платы, на которую впаиваются светодиоды (типоразмеров SMD5050, SMD3528 и так далее);
  6. Резисторов (чипы) для защиты светодиодов от пульсирующего тока;
  7. Светорассеивателя для создания равномерного светового потока.

Как подключить светодиодные лампы на 220 вольт

Самая большая хитрость при подключении светодиодных ламп на 220 в, что никакой хитрости нет. Подключение происходит абсолютно точно также, как вы это делали с лампами накаливания или компактными люминесцентными лампами (КЛЛ). Для этого: обесточьте цоколь, а затем вкрутите в него лампу. При установке никогда не касайтесь металлических частей лампы: помните, что иногда нерадивые электрики вместо фазы могут провести через выключатель ноль. В таком случае, фазное напряжение никогда не будет сниматься с цоколя.

Производители выпустили светодиодные аналоги всех, выпускавшихся ранее типов ламп с самыми разными цоколями: Е27, Е14, GU5.3 и так далее. Принцип установки для них остается такой же.

Если же Вы купили светодиодную лампочку, рассчитанную на 12 или 24 Вольта, тогда Вам не обойтись без блока питания. Подключение источников света производится параллельно: все «плюсы» лампочек вместе к плюсовому выходу блока питания, а все «минусы» вместе - к «минусу» блока питания.

В данном случае, важно соблюдать полярность («плюс» - к «плюсу», «минус» - к «минусу»), поскольку светодиоды будут испускать световой поток только в том случае, если соблюдена полярность! Некоторые изделия при переполюсовке могут выйти из строя.

Внимание! Не перепутайте блок питания (источник питания) постоянного напряжения с трансформатором. Трансформатор дает на выходе переменное напряжение, в то время как источник питания - постоянное напряжение.

Например, у вас есть мебельная подсветка на кухне, в гардеробе или в другом месте, составленная из 4-х галогенных ламп мощностью 40 Вт и напряжением 12 В, запитанных от трансформатора. Вы решили заменить эти лампы на светодиодные 4 штуки по 4–5 Вт.

Внимание! В этом случае необходимо заменить используемый ранее трансформатор на источник постоянного напряжения 12 В мощностью не менее 16–20 Вт.

Иногда подобные светодиодные лампы для точечных светильников в большинстве случаев комплектуются блоком питания на заводе-изготовителе. При покупке таких ламп следует одновременно озадачиться и покупкой источника питания.

Как сделать простую светодиодную лампочку

Для того, чтоб собрать светодиодную лампу нам потребуется старая люминесцентная лампа, точнее ее основание с цоколем, длинный кусок 12 В светодиодной ленты,
и пустая алюминиевая 330 мл банка

Для питания такой лампы понадобится источник постоянного напряжение на 12 В такого размера, чтобы без проблем вошел внутрь банки.

Итак, теперь само изготовление:

  1. Обмотайте лентой банку, как показано на рисунке.
  2. Припаяйте провода от светодиодной ленты к выходу источника питания (ИП).
  3. Вход ИП проводами припаяйте к цоколю основания лампы.
  4. Сам источник надежно закрепите внутри банки, предварительно вырезав достаточное по размеру отверстие для пропускания ИП внутрь.
  5. Приклейте банку с лентой к основанию корпуса с цоколем и лампа готова.

Конечно, такая лампа не шедевр дизайнерского искусства, но зато сделана своими руками!

Основные неисправности светодиодных ламп на 220 вольт

Исходя из многолетнего опыта, если не горит светодиодная лампа 220 в, то причины могут быть следующими:

1. Выход из строя светодиодов

Поскольку в светодиодной лампе все светодиоды подключены последовательно, если выходит хотя бы один из них, вся лампочка перестает светится поскольку возникает обрыв цепи. В большинстве случаев светодиоды в лампах на 220 применяются 2-х типоразмеров: SMD5050 и SMD3528.

Для устранения этой причины необходимо найти вышедший из строя светодиод и заменить его на другой, или же поставить перемычку (перемычками лучше не злоупотреблять - так как они могут увеличить ток через светодиоды в некоторых схемах). При решении проблемы вторым способом незначительно уменьшится световой поток, однако лампочка опять станет светить.

Чтоб найти поврежденный светодиод нам понадобится источник питания с низким током (20 мА) или мультиметр.

Для этого подаем «+» на анод, а «–» на катод. Если светодиод не засветится, значит он вышел из строя. Таким образом нужно проверить каждый из светодиодов лампы. Также вышедший из строя светодиод можно определить визуально, это выглядит примерно так:

Причиной данной поломки в большинстве случаев является отсутствие какой-либо защиты светодиода.

2. Выход из строя диодного моста

В большинству случаев при таковой неисправности основная причина - заводской брак. И в таком в случае зачастую «вылетают» и светодиоды. Для решения данной проблемы необходимо заменить диодный мост (или диоды моста) и проверить все светодиоды.

Чтобы проверить диодный мост необходим мультиметр. Необходимо подать на вход моста переменное напряжение 220 В, и проверить напряжение на выходе. Если на выходе оно остается переменным, то значит диодный мост вышел из строя.

Если диодный мост собран на отдельных диодах, их можно поочередно выпаять и проверить прибором. Диод должен пропускать ток только в одном направлении. Если он вообще не пропускает ток или пропускает при подаче на катод положительной полуволны значит он вышел из строя и требует замены.

3. Плохая пайка выводных концов

В данном случае нам будет необходим мультиметр. Нужно разобраться в схеме светодиодной лампы и далее проверять все точки, начиная со входного напряжения 220 В и заканчивая выводами светодиодов. Исходя из опыта, данная проблема присуща дешевым светодиодным лампам и чтоб ее устранить достаточно паяльником дополнительно пропаять все детали и компоненты.

Заключение

Светодиодная лампа 220 в - это энергоэффективное устройство, обладающее хорошими техническими характеристиками, простой конструкцией и легкой эксплуатацией, что позволяет их использования как в домашних, так и промышленных условиях.

Также стоит отметить, чтоб при наличии некоторых приспособлений, образования и опыта можно определить неисправности светодиодных ламп на 220 вольт и с минимальными затратами устранить их.

Видео по теме

Несмотря на высокую стоимость, потребление электроэнергии полупроводниковыми светильниками (LED) намного меньше, чем у ламп накаливания, а срок службы в 5 раз больше. Схема светодиодной лампы работает при подаче 220 вольт, когда входной сигнал, вызывающий свечение, преобразуется до рабочей величины с помощью драйвера.

Светодиодные светильники на 220 В

Каким бы ни было напряжение питания, на один светодиод подается постоянное напряжение 1,8-4 В.

Типы светодиодов

Светодиод – это полупроводниковый кристалл из нескольких слоев, преобразующий электричество в видимый свет. При изменении его состава получается излучение определенного цвета. Светодиод делается на основе чипа – кристалла с площадкой для подключения проводников питания.

Чтобы воспроизвести белый свет, «синий» чип покрывается желтым люминофором. При излучении кристалла люминофор испускает собственное. Смешивание желтого и синего света образует белый.

Разные способы сборки чипов позволяют создавать 4 основных типа светодиодов:

  1. DIP – состоит из кристалла с расположенной сверху линзой и присоединенными двумя проводниками. Он наиболее распространен и используется для подсветки, в световых украшениях и табло.
  2. «Пиранья» – похожая конструкция, но с четырьмя выводами, что делает ее более надежной для монтажа и улучшает отвод выделяющегося тепла. Большей частью применяется в автомобильной промышленности.
  3. SMD-светодиод – размещается на поверхности, за счет чего удается уменьшить габариты, улучшить теплоотвод и обеспечить множество вариантов исполнения. Используется в любых источниках света.
  4. СОВ-технология, где чип впаивается в плату. За счет этого контакт лучше защищен от окисления и перегрева, а также значительно повышается интенсивность свечения. Если светодиод перегорает, его надо полностью менять, поскольку ремонт своими руками с заменой отдельных чипов не возможен.

Недостатком светодиода является его маленький размер. Чтобы создать большое красочное световое изображение, требуется много источников, объединенных в группы. Кроме того, кристалл со временем стареет, и яркость ламп постепенно падает. У качественных моделей процесс износа протекает очень медленно.

Устройство LED-лампы

В состав лампы входят:

  • корпус;
  • цоколь;
  • рассеиватель;
  • радиатор;
  • блок светодиодов LED;
  • бестрансформаторный драйвер.

Устройство LED-лампы на 220 вольт

На рисунке изображена современная LED-лампа по технологии СОВ. Светодиод выполнен как одно целое, с множеством кристаллов. Для него не требуется распайка многочисленных контактов. Достаточно присоединить всего одну пару. Когда делается ремонт светильника с перегоревшим светодиодом, его меняют целиком.

По форме лампы бывают круглыми, цилиндрическими и прочими. Подключение к сети питания производится через резьбовые или штырьковые цоколи.

Под общее освещение выбираются светильники с 2700К, 3500К и 5000К. Градации спектра могут быть любыми. Их часто используют для освещения реклам и в декоративных целях.

Простейшая схема драйвера для питания лампы от сети изображена на рисунке ниже. Количество деталей здесь минимальное, за счет наличия одного или двух гасящих резисторов R1, R2 и встречно-параллельного включения светодиодов HL1, HL2. Так они защищают друг друга от обратного напряжения. При этом частота мерцания лампы увеличивается до 100 Гц.

Простейшая схема подключения LED-лампы в сеть 220 вольт

Напряжение питания 220 вольт поступает через ограничительный конденсатор С1 на выпрямительный мост, а после – на лампу. Один из светодиодов можно заменить на обычный выпрямительный, но при этом мерцание изменится до 25 Гц, что плохо повлияет на зрение.

На рисунке ниже изображена классическая схема источника питания LED-лампы. Он применяется во многих моделях, и его можно извлекать, чтобы производить ремонт своими руками.

Классическая схема включения LED-лампы в сеть 220 В

На электролитическом конденсаторе выпрямленное напряжение сглаживается, что устраняет мерцание с частотой 100 Гц. Резистор R1 разряжает конденсатор при отключении питания.

своими руками

В простой LED-лампе с отдельными светодиодами можно сделать ремонт с заменой неисправных элементов. Она легко разбирается, если аккуратно отделить от стеклянного корпуса цоколь. Внутри располагаются светодиоды. У лампы MR 16 их 27 штук. Для доступа к печатной плате, на которой они размещены, надо удалить защитное стекло, поддев его отверткой. Порой эту операцию сделать довольно трудно.

Лампа светодиодная на 220 вольт

Прогоревшие светодиоды сразу заменяются. Остальные следует прозвонить тестером или подать на каждый напряжение 1,5 В. Исправные должны загораться, а остальные подлежат замене.

Изготовитель рассчитывает лампы так, чтобы рабочий ток светодиодов был как можно выше. Это значительно снижает их ресурс, но «вечные» устройства продавать невыгодно. Поэтому последовательно к светодиодам можно подключить ограничивающий резистор.

Если светильники моргают, причиной может быть выход из строя конденсатора С1. Его следует заменить на другой, с номинальным напряжением 400 В.

Заново светильники на светодиодах делают редко. Лампу проще изготовить из неисправной. Фактически получается, что ремонт и изготовление нового изделия – это один процесс. Для этого LED-лампу разбирают и восстанавливают перегоревшие светодиоды и радиодетали драйвера. В продаже часто бывают оригинальные светильники с нестандартными лампами, которым в дальнейшем трудно найти замену. Простой драйвер можно взять из неисправной лампы, а светодиоды – из старого фонарика.

Схема драйвера собирается по классическому образцу, рассмотренному выше. Только к ней добавляется резистор R3 для разрядки конденсатора С2 при отключении и пара стабилитронов VD2,VD3 для его шунтирования на случай обрыва цепи светодиодов. Можно обойтись одним стабилитроном, если правильно подобрать напряжение стабилизации. Если конденсатор выбрать под напряжение больше 220 В, можно обойтись без дополнительных деталей. Но в этом случае его размеры увеличатся и после того, как будет сделан ремонт, плата с деталями может не поместиться в цоколь.

Драйвер LED-лампы

Схема драйвера приведена для лампы из 20 светодиодов. Если их количество будет другим, необходимо подобрать такую величину емкости конденсатора С1, чтобы через них проходил ток 20 мА.

Схема питания LED-лампы является чаще всего бестрансформаторной, и следует соблюдать осторожность при монтаже своими руками на металлическом светильнике, чтобы не было замыкания фазы или нуля на корпус.

Конденсаторы подбираются по таблице, в зависимости от количества светодиодов. Их можно закрепить на алюминиевой пластине в количестве 20-30 шт. Для этого в ней сверлятся отверстия, и на термоклей устанавливаются светодиоды. Их пайка производится последовательно. Все детали можно разместить на печатной плате из стеклотекстолита. Они располагаются со стороны, где отсутствуют печатные дорожки, за исключением светодиодов. Последние – крепятся пайкой выводов на плате. Их длина составляет около 5 мм. Затем устройство собирается в светильнике.

Для многих многоквартирных домов актуальна проблема освещения лестничных площадок: хорошую лампу туда ставить жалко, а дешевые быстро выходят из строя.

С другой стороны качество освещения в данном случае не является критичным, так как люди находятся там очень недолго, то вполне можно поставить туда лапочки с повышенными пульсациями. А раз так, то схема светодиодной лампы на 220 В получиться совсем простой:

Список номиналов:

  • C1 – значение емкости по таблице, 275 В или больше
  • C2 – 100 мкФ (напряжение должно быть больше чем падает на диодах
  • R1 – 100 Ом
  • R2 – 1 MОм (для разряда конденсатора C1)
  • VD1 .. VD4 – 1N4007

Я уже приводил схему подключение светодиодной ленты к сети 220В так вот её можно упростить выкинуть стабилизатор тока. Упрощенная схема не будет работать в широком диапазоне напряжений, это плата за упрощение.

Конденсатор C1 является тем компонентом, который ограничивает ток. И выбор его значения очень важен, его величина зависит от напряжения питания, напряжения на последовательно включенных светодиодах и требуемого тока через светодиоды.

количество светодиодов последовательно, шт 1 10 20 30 50 70
напряжение на сборке из светодиодов, В 3,5 35 70 105 165 230
ток через светодиоды, мА (С1=1000нФ) 64 57 49 42 32 20
ток через светодиоды, мА (С1=680нФ) 44 39 34 29 22 14
ток через светодиоды, мА (С1=470нФ) 30 27 24 20 15
ток через светодиоды, мА (С1=330нФ) 21 19 17 14
ток через светодиоды, мА (С1=220нФ) 14 13 11

Для 1 светодиода в сборке фильтрующий конденсатор C2 следует увеличить до 1000мкФ, а для 10 светодиодов, до 470мкФ.

По таблице можно понять, что для получения максимальной мощности (чуть более 4 Вт) нужен конденсатор на 1мкФ и 70 последовательно включенных светодиодов на 20мА. Для более мощных источников света лучше подойдет схема светодиодной лампы на 220 в использующая широтноимпульсную модуляцию для преобразования и стабилизации тока через светодиоды.

Схемы на основе широтноимпульсной более сложные, но зато обладают преимуществами: им не требуется большой ограничивающий конденсатор, эти схемы обладают высоким КПД и широким диапазоном работы.

Я заказал несколько светодиодных светильников в Китае. В основе преобразователей этих ламп лежат микросхемы драйверов разработанных в том же Китае, конечно качество работы этих схем ещё не дотягивает до западных стандартов, но вот стоимость более чем демократичная.


Итак, конкретно в последних светодиодных лампах была установлена микросхема WS3413D7P, являющаяся светодиодным драйвером с активным корректором коэффициента мощности.


Что же мы видим на схеме? Все тот же диодный мост VD1 — VD4, сглаживающий конденсатор С1. Остальные же компоненты работают нужны для работы микросхемы D1. Резистор R1 нужен для питания самой микросхемы в начальный момент времени, а после запуска микросхема начинает питаться со своего выхода через цепочку R5, VD5. Конденсатор С2 фильтрует питания собственных нужд. Конденсатор С3 служит для задания частоты преобразования. Резистор R2 нужен для измерения тока через светодиоды. Делитель на резисторах R3, R4 позволяет микросхеме получать информацию о напряжении на светодиодной сборке. Катушка индуктивности L1 и конденсатор C4 нужны для преобразования импульсной энергии в постоянную.

Существует куча других разновидностей микросхем, но основных типов высоковольтных драйверов светодиодов всего три: на основе емкостного гасящего сопротивления, активный гасящий стабилизатор тока и импульсный стабилизатор тока.

Навигация по записям

14 thoughts on “Схема светодиодной лампы на 220 в

  1. Игорь

    Даже с «выброшенным» стабилизатором, светодиодная лампочка для подъезда получается слишком дорогой. Там лучше вкрутить обычную лампочку «Ильича Эдисона» с диодом, который монтируется в слегка модернизированный патрон.

    1. Валерий

      Не в патрон, в выключатель, там больше места.

  2. Greg

    Не знаю, что слишком дорогого увидел здесь Игорь, но, уж если экономить по полной, то можно выкинуть сопротивления и мост. Останутся: С1, как реактивное сопротивление, один диод для выпрямления переменки и С2 (емкость увеличить в 2-3 раза) для сглаживания пульсаций. Затраты на питание и замену ламп накаливания гораздо выше, чем, даже первоначальный вариант схемы. Очень уж они неэкономичны, причем, во всех ракурсах. От них и избавляются поэтому везде, где только можно. А в подъездах — это архиважно и архинужно, как говаривал Ильич.

  3. admin Автор записи

    У лампы накаливая маловат ресурс, на коробке пишут 1000ч, при круглосуточной работе это 42 дня. В лучшем случае лампочка прослужит несколько месяцев.
    Питание лампы однополупериодным напряжением должно значительно увеличить ресурс (якобы до 100 раз), вот только светоотдача упадет больше чем в два раза. И лампочка будет мерцать с частотой 50Гц.
    Чтобы вернуть частоту к 100Гц, достаточно включить две одинаковых лампочки последовательно — и ресурс возрастет и частота не снизиться.

  4. олександр

    В первой схеме конденсатор С1 надо брать на большее допустимое напряжение в сети 220 в это действующее напряжение Максимальное 220*1,42= примерно 320 в к тому же как правило На конденсаторе указывается на постоянное напряжение а в сети 50 герц. Я рекомендую брать не меньше 450 В. Один диод как пишет Greg не пойдет так на светодиоды или выпрямительный диод будет действовать обратное напряжение.Я рекомендую Выкинуть диодный мост и С2 параллейно светодиодам в обратной полярности поставить диол один период пойдет через светодиод другой через силовой диод. Светодиод можно взять из не исправных фонариков.

  5. Greg

    Ну, обратное напряжение светодиоды должны выдержать, но идея хороша. Зачем терять один период? С2 — выбрасываем, да, а вместо предложенного Олександром силового, ставим еще один световой — пусть моргают попеременно, усиливая общий световой поток и защищая друг дружку от обратного напряжения. А учитывая, что сверхъярких светодиодов, в некоторые фонарики тулят штук по 20, наковырять можно много. Можно и целиком взять, у многих ручных фонарей — ручка выполнена в виде удлиненной лампочки кругового рассеивания.

  6. олександр

    Данную схему можно не только в подъезде как предполагает (Игорь) но где угодно, например освещение приусадебного участка по схеме Greg через понижающий трансформатор для безопасности и две группы светодиодов включенных параллейно и в противоположной полярности.или освещение кессона, душа летнего.

  7. Анатолий

    Я часто видел в подъездах мерцающие лампочки накаливания, где использовался «хитрый» патрон с одним диодом. По моему самое то для подъезда, экономия энергии и непрезентабельный вид. Вот для дома схема №1 вполне подойдёт, скопирую её себе.

  8. Николай

    разобрал «замолчавшую» светодиодную лампу на 11 ватт(100 эквивалента к накаливанию). То что автор называет драйвером, обычный инвертор, схема которого вошла в быт повсеместно, от лампочек до компьютеров и сварочных аппаратов. Так вот на моей лампе стоит 20 диодных светоизлучающих элементов. Исследуя их я пришел к выводу, что они включены как елочная гирлянда — последовательно. Обнаружить неисправный диод не составило труда. Припаяв перемычку из резистроа порядка 50 ом, лампа восстановилась. Так что светоизлучатели работают не при 9.8 иольтах а на всё напряжение выдаваемое инвертором. То есть 220 вольт.
    Дале — у меня есть фонарь ЭРА летучая мышь, с 6 вольтовым АКБ и люминесцентной лампой. Эта лампа светит очень гумозно при своих 7 ваттах. А АКБ хватает на 4 часа. Что я сделал — выпаял из схемы «драйвера» диодный мост и плату со светоизлучателями. В точки пайки проводов от инвертора обозначенные + и — , впаял этот мост соблюдая полярность. На вход моста подал переменное напряжение которое вырабатывал штатный генератор «Эры». Лампа заработала как надо. Светоотдача осталась той же как и от сети 220 вольт. Поскольку холостой ход генератора обеспечивал это напряжение на светоизлучателях.
    Как то вот так.

В отличие от прозрачных ламп накаливания, основное устройство светодиодной лампы скрыто под непрозрачным корпусом. Чтобы узнать, что скрывается внутри экономичного осветительного прибора, его потребуется разобрать, приложив небольшие усилия.

Эксперименты показали, что устройства светодиодных лампочек на 220 В от разных производителей имеют незначительные отличия. Поэтому весь ассортимент LED-ламп с цоколем Е14 и Е27 можно разделить на три группы: фирменные, низкокачественные китайские и филаментные.

Фирменные изделия

Конструкция LED-лампы на 220 В от производителей светодиодной продукции с мировым именем аналогична ниже представленному фото. Среди огромной массы лампочек на российском рынке внешне такой образец имеет одно явное отличие – объемный радиатор. Он может быть с ребристой или гладкой поверхностью; металлического цвета или покрыт белым полимером. Но в любом случае такая лампа имеет больший вес в сравнении с дешёвым, некачественным аналогом.

Верхняя часть изделия (рассеиватель) выполняется из стекла или матового пластика в форме полусферы. Как правило, он закреплен на радиатор при помощи специальных защелок или герметика. Под рассеивателем находится печатная плата с SMD-светодиодами, которая надёжно закреплена на радиаторе. Ниже размещается ещё одна плата с радиоэлементами драйвера. Надёжный драйвер – это блок с гальванической развязкой и функцией стабилизации выходного тока. Вся схема драйвера имеет высокую плотность монтажа и состоит из импульсного трансформатор, микросхем, нескольких полярных конденсаторов и множества планарных элементов.
Блок драйвера расположен внутри корпуса, который, в свою очередь, соединяет цоколь и радиатор. Электрический контакт между блоком драйвера и платой со светодиодами может быть обеспечен с помощью пайки или коннектора.

Низкокачественные китайские лампочки

Ниже представлена светодиодная лампа в разобранном виде от неизвестного китайского изготовителя.
В отличие от предыдущего образца, в данном устройстве отсутствует радиатор и драйвер. Вместо драйвера установлен простой блок питания на основе неполярного конденсатора, который не способен надежно стабилизировать выходной ток. Размещается блок питания в центре платы со светодиодами. С одной стороны – это диодный мост с резисторами.
С другой – два конденсатора.
В результате простоты такой конструкции стоимость изделия имеет гораздо меньшую стоимость.

Функцию охлаждения в таких лампочках выполняют небольшие отверстия в корпусе. Их эффективность крайне мала, что подтверждено перегоранием кристаллов светоизлучающих диодов. Плата крепится к пластиковому корпусу при помощи защелок. Электрически плата соединяется с цоколем двумя запаянными проводами. Простота такой конструкции не надежна и не способна обеспечить долгосрочную работоспособность устройства.

Filament лампы

Разнообразие лампочек на светодиодах с цоколем Е14 и Е27 не перестаёт расширяться. Очередным ноу-хау стали, так светодиодные лампы филамент (от англ. filament – нить), которые внешне очень схожи с лампами накаливания. Ученым удалось на практике реализовать светодиодный конструктив, визуально напоминающий нить накала и не требующий дополнительного теплоотвода. Использование филамент лампы (ФЛ) в быту, как правило, основывается на эстетических соображениях.
В устройстве светодиодной лампы filament основным элементом являются светодиодные нити, от количества которых зависит суммарная мощность изделия. Каждый отдельный филамент – это тонкий стеклянный стержень, поверхность которого равномерно покрыта электрически связанными SMD-светодиодами. Сверху по всей длине нанесён слой люминофора, что придаёт нити жёлтый оттенок. Отвод тепла в ФЛ происходит через тонкую стеклянную колбу, внутренний объём которой заполнен газовой смесью.

Зачастую нехватка места для драйвера вынуждает производителей устанавливать модуль питания низкого качества непосредственно в цоколе осветительного прибора. Результат такого подхода – чрезмерно высокий , негативно воздействующий на зрение. Чтобы избавиться от вредного мерцания и составить конкуренцию обычным LED лампам, фирмы-изготовители модернизировали конструкцию ФЛ. Между цоколем и колбой стали делать вставку в виде пластикового кольца, за которым скрывается высококачественный драйвер.

Каждый из рассмотренных образцов пользуется спросом на потребительском рынке, а значит, будет развиваться дальше. Возможно, вскоре в устройстве светодиодной лампы на 220В появятся новые функциональные блоки, о назначении которых мы обязательно расскажем в своих статьях.

Читайте так же

В продолжение темы:
Android

| Отдых и увлечения | Быт | Архив | RSS Биллинг в банковской деятельности: система расчётов, удобная для всех В ассортимент услуг практически любого банка входит...

Новые статьи
/
Популярные