Практическая конструкция YAGI антенн. Однодиапазонные направленные антенны Антенна обладает отличной широкополосностью, не нуждается в настройке и принесёт удовольствие от работы на этом замечательном диапазоне начавшем "оживать". Пора готовить антенное х

Двухэлементная однодиапазонная антенна HB9CV на диапазон 7 МГц или 10 МГц с активным питанием элементов

Начато производство новой уникальной на нашем рынке двухэлементной HB9CV антенны SAY2-30CV, SAY 2-40CV . Особенностью антенны является активное питание обоих элементов с запиткой по одному кабелю. Геометрические размеры максимально приближены к оптимальным для всех диапазонов. За основу взяты давно себя зарекомендовавшие укороченные диполи SAD40 и SAD4030. Так как мощность передатчика делится между всеми двумя элементами рабочая мощность антенны возросла до 5000 Вт. По своим параметрам антенна практически превосходит полноразмерные 2-х элементные волновые каналы. Применение для согласования короткозамкнутых шлейфов позволяет значительно уменьшить влияние статического электричества. Достаточно лёгкая антенна удобна для установки в ограниченном пространстве с использованием облегчённых мачт и не дорогих поворотных устройств. Длина упаковки - 3 м. Все элементы изолированы от траверсы. Антенна надёжно сделана с учётом накопленного нами опыта длительного производства антенн типа волновой канал.

Ролик с параметрами антенны на Youtube

Рабочие диапазоны - 7 МГц или 10.1 МГц

Элементов на диапазон - 2

Усиление антенны - 4,9 дБд (в свободном пространстве) и до 10-11 дБи в зависимости от высоты установки

Отношение F/B не хуже - 18 - 25 дБ в зависимости от высоты установки и трассы

Полоса пропускания по КСВ 1.5 - 130 кГц (7 МГц)

Максимальная мощность - 5000 Вт SSB

Входное сопротивление - 50 Ом Антенна запитывается через балун 1:1 любой конструкции

Длина траверсы - 4.2 м

Максимальная длина элемента - 14.1м

Радиус поворота - 7.3 м

Площадь ветровой нагрузки - 0.56 кв.м

Вес антенны - 24 кГ

Стоимость антенны на диапазон 7 МГЦ - 26500 р, 10 МГц - 25500 р

2 элемента Яги на 14 мГц SAM 2-20. Походный вариант.

Изготовлена и проверена в работе облегчённая конструкция Яги 2 элемента на 20 м предназначеная для работы на выездах. Антенна имеет недольшой вес - 9.5 кг, быстро собирается и разбирается, имеет небольшие размеры в разобранном виде - 1.5 м. Возможно изготовление такой антенны и для стационарных условий. Антенна рассчитана под высоту установки 10 м.

КСВ по диапазону не превышает 1.3.

Макс. длина элемента - 11 м

Длина траверсы - 3.3 м

Стоимость - 9000 р.

Стационарная антенна с усиленными элементами 10000 р.

Длина траверсы - 9.4 м

Вес антенны - 23 кг

Усиление - 8.4 dBd (10.55 dBi) (Свободное пространство)

Отношение F/B - до 25 dB

Радиус поворота - 5.4 м

Максимальная длина элемента - 6.2 м

Цена антенны - 18100 р.

Демонстрация диараммы направленности антенны - http://youtu.be/B-C2Q0Cuod0

Демонстрация КСВ антенны - http://youtu.be/YIW6ilD1kww

Антенна обладает отличной широкополосностью, не нуждается в настройке и принесёт удовольствие от работы на этом замечательном диапазоне начавшем "оживать".

5 элементная Яги на 14 мГц SAM 5-20. Дизайн RA3LE.

Коллектив Сов.Антенна воплотил в "железе" ещё одну удачную разработку Цыганкова Валерия Ивановича RA3LE. Это высокоэффективная 5 элементная антенна типа волновой канал для диапазона 14 мГц. Антенна обладает отличными параметрами и рассчитана по принципам эффективных УКВ антенн.



Диапазон - 14 мГц

Количество элементов - 5

Длина траверсы - 13.5 м

Радиус поворота - 8.5 м

Ветровая площадь - 1.1 кв.м.

Вес - 37 кг без учёта веса плиты крепления антенны к мачте.


КСВ (14.0 – 14.150 – 14.3) - 1.25 – 1.1 – 1.3



Цена антенны - 28000 р.

Растяжка траверсы - типа "двойной треугольник" .

Упаковка - одна коробка 3 х 0.25 х 0.25 м

5 элементов Яги на 28 мГц SAM 5-10. Дизайн RA3LE.

Новая разработка талантливого радиолюбителя RA3LE воплощена нашим коллективом. Длина антенны 7.5 м, запитка 50 Ом кабелем через симметрирующее устройство любой доступной конструкции.

Длина траверсы - 7.55 м

Вес антенны - 15 кг

Отношение F/B - до 29 dB

Фидер - 1 коаксиал 50 Ом (запитка через балун 1:1)

Цена антенны - 15500 р.

Антенна обладает отличной широкополосностью, не нуждается в настройке и принесёт удовольствие от работы на этом замечательном диапазоне начавшем "оживать". Пора готовить антенное хозяйство к новым достижениям!

SAD 1-40. Диполь диапазона 40 м.

Снова откройте для себя интереснейший диапазон 7 мГц. С антенной SAD 1-40 Вы получите настоящее удовольствие от работы с отличной малошумящей антенной, особенно в промышленных районах, где низкий уровень шумов в горизонтальной поляризации позволит ощутить замечательную глубину радиолюбительского эфира, и провести связи с корреспондентами, которых Вы на вертикальные антенны просто не слышите. Укорочение длины выполнено высокодобротной индуктивностью большого диаметра, что хорошо сказывается на КПД и широкополосности антенны. Относительно небольшие размеры и вес позволяют разместить антенну над уже существующей антенной системой.

Длина - 14.7 м

Вес - 11.5 кг


КСВ (7.0 – 7.05 – 7.1) - 1.3 – 1.1 – 1.3 (ширина полосы по КСВ 1.5 – 180 кГц)


Ветровое сопр. - 0,31 кв.м
Антенна запитывается одним 50 Ом кабелем через балун 1:1 любой конструкции.
Цена антенны 11300 р.

Цена антенны с растяжкой элемента типа "двойной треугольник" - 12000 р.

Упаковка - одна коробка 1.6 х 0.25 х 0.2 м

SAY 2-40 Двухэлементный волновой канал диапазона 40 м.

Замечательная и высококачественная антенна диапазона 40 м. С выходной мощностью 60 Вт во время "обкатки" проведены радиосвязи с радиолюбителями всех континентов. Великолепная антенна!

Основные параметры антенны SAY 2-40 2 элемента Яги на 40 м

Диапазон 40м Усиление (dBd) 3.6 Усиление (dBi) 10.5 Отношение вперёд/назад (dB) 15 КСВ 7,00 - 7,06 - 7,20 1,4 - 1,1 - 2,0 Количество элементов 2 Макс. длина эл. (м) 14.9 Длина бума (м) 5.6 Радиус поворота (м) 7.96 Фидер 1 Коаксиал 50 Ом через балун 1:1 любой конструкции Вес (кг) 30 Ветровое сопротивление при 130 км/ч 500 N / 0,62 м² / 6,8 feet² Цена 21200 руб.


SAM 3-40L Трёхэлементная полноразмерная антенна диапазона 40 м



Отличная бескомпромиссная широкополосная антенна волновой канал диапазона 40 м принесёт удовольствие от работы с редкими корреспондентами. Траверса изготовлена из Д-16Т, элементы комбинированные из АД 31Т1 (толстые трубы) и Д16Т(от 25 мм и тоньше), что позволило сделать антенну с отличными механическими параметрами. Антенна изготовлена на основании рассчётов Валерия Ивановича Цыганкова RA3LE.


Длина бума - 11 м

Максимальная длина эл. - 22 м

Радиус поворота - 12.8 м

Антенна запитывается 50 Ом кабелем через балун 1:1 любой конструкции

Цена антенны - 46000 р. SAY 3-40S - 45000 р.

SAY 2-30 Двухэлементный волновой канал диапазона 30 м.


Основные параметры антенны SAY 2-30 2 элемента Яги на 30 м


Диапазон 30м
Усиление (dBd) 3.6
Усиление (dBi) 10.5
Отношение вперёд/назад (dB) 20
КСВ
10,10 - 10,12 - 10,15 1,3 - 1,1 - 1,3

Количество элементов 2
Макс. длина эл. (м) 9.3
Длина бума (м) 3.6
Радиус поворота (м) 4.96
Фидер 1 Коаксиал 50 Ом запитывается через балун 1:1 любой конструкции
Вес (кг) 20
Ветровое сопротивление при 130 км/ч 350 N / 0,44 м² / 4,8 feet²

Цена 18800 руб.

Упаковка - одна коробка 3.1 х 0.2 х 0.2 м

SAM 3-20 3-х элементная антенна на диапазон 20 м


Красивая и удобная антенна для комфортной работы в диапазоне 14 мГц. Антенна поставляется с траверсой с растяжками типа двойной объёмный треугольник (13000 р.) и в стандартном варианте.

Длина траверсы (м) 7.4

Максимальная длина элемента (м) 11.2

Входное сопротивление (Ом) 50

Антенна запитывается через балун 1:1

Вес антенны (кг) 23

Цена антенны 12600 руб.


SAM 5-15 5-ти элементная антенна на диапазон 15 м

Очень удачная разработка Цыганкова В.И. RA3LE. Широкополосная антенна 5 эл. с высокими параметрами для серьёзной ДХ работы.

Длина траверсы - 8.5 м

Вес антенны - 17 кг

Усиление - 7.76 dBd (9.91 dBi)

Отношение F/B - до 29 dB

Фидер - 1 коаксиал 50 Ом (запитка через балун 1:1)

Цена антенны - 15700 р .

Тел. +7-916-4161489 e-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Случайно сделал антенну на 144 МГц. Просто давно хотел сделать волновой канал на четыре или пять элементов. А тут бессонница замучала и я взялся за пилу по металлу? дрель, ножик, термоусадку, зажигалку, ножницы, обжимку и пистолет заправленный силиконом. Как обычно использовалась схема монобенда от RZ9CJ. Схема простая, вот её конфигуратив для трубок диаметром восемь миллиметров.

Так как делалось спонтанно, то я запечатлел на фото лишь часть процесса... да и не так уж это всё сложно. Единственная проблема была в том как поднять элементы над бумом. Для того, чтобы не рассчитывать бум коррекцию, необходимо поднять элементы над бумом на половину диаметра бума. Контакт бума и элементов (кроме вибратора) никаких искажений вносить в не будет. По этому я жёстко закрепил элементы к буму металлическими болтами, а приподнял элементы на небольших пластиковых пластинах.

Поясню технологию изготовления этого монстрика.

Сначала наносится разметка, пилятся все элементы и сверлятся все отверстия в элементах.

В результате мы имеем:

  • рефлектор,
  • вибратор,
  • два директора,
  • четыре крепления элементов на буме,
  • болты с гайками.

Дырочки в торцах я заблаговременно заклеил силиконом, чтобы вода не стекала внутрь трубки и не попала в разъём питания кабеля.

Вот так были приклеены площадки для подъёма элементов над бумом. Мне лень было пересчитывать бум-коррекцию и я поднял элементы над бумом на половину диаметра бума. На самом деле получилось, что поднял на толщину бума, но это даже лучше.

Потом всю конструкцию можно покрыть эмалью. Эмаль следует выбирать ту которая не проводит высокочастотное электричество. Если нет такой краски, то лучше оставить все элементы не окрашенными. Из-за плохой схватываемости краски, я сначала покрасил всё эмалью, а потом в течение суток эту эмаль отскребал. С краской нужно быть осторожней

Накладываются пластиковые надставки на бум и приклеиваются эпоксидной смолой стойкой к ультрафиолету.

Собирается вибратор на пластиковой подложке и фиксируется к ней болтами с эпоксидной смолой.

Всё, антенна готова, теперь осталось её закрепить на диэлектрической мачте и можно пользоваться.

На самом деле всё не так сложно как кажется, но главное себя побороть и начать делать.

Фотография готовой антенны отсутствует так как прошел почти год, а статью я удосужился написать только сейчас. Минусы подобной антенны точно такие же как и при изготовлении антенны с использованием арматуры для пластиковой трубы, которая применялась для изготовления двухэлементной антенны Удо-Яги .

Основные минусы антенны, изготовленной таким способом, вполне предсказуемы. Во-первых, при среднем ветре элементы начинают проворачиваться в креплении. Во-вторых, из-за малой площади контакта, при очень сильном шквальном ветре элементы ломаются в месте сверловки. В-третьих, коннектор на кабеле оказался неудобным, вероятно лучше его монтировать прямо на антенне или делать кабель длиннее двух метров. Скорей всего для подобной самоделке лучше подходит вариант с петлевым вибратором, а не разрезным вибратором. Скоро я пересмотрю подход к элементарной базе подобной антенны и сделаю следующий вариант.

17 мая 2015 года установил 2-х элементную Яги диапазона 14 Мгц, оба активные элемента, конструкции HB9CV.

Антенна уже довольно редко встречается в эфире в наше время. Впервые была предложена еще в конце 1950-х. Пользовалась популярностью в 70-х и 80-х годах. Вот я решил, в очередной раз повторить конструкцию. Почему именно её?

Была свободная телескопическая мачта с защелками. Большой груз она ужерживать не может (оптимально 5 кг) 3-х дапазонный спайдер она выдерживает с трудом, либо половина высоты телескопа. Выбор был сделать легкую направленную и эффективную однодиапазонную антенну на частоту 14 Мгц. Я рассмотрел варианты MOXON, классику 3 эл яги с двумя пассивными элементами и 2 элемента HB9CV.

По весу и усилению антенн я остановился все же на HB9CV. При одинаковых значениях коэффициента усиления двухэлементная система легче, проще в конструктивном отношении и обладает меньшим моментом инерции и парусностью. Антенна с активным питанием позволяет получить большее подавление излучения назад...

В старом Ротхаммере и интернете было достаточно информации для изготовления, те более у меня был опыт с этой антенной в 2005 году, как полевой, мобильный вариант.

Антенна представляет собой два вибратора неравной длины, укрепленные параллельно в одной горизонтальной плоскости на расстоянии l/8. Оба вибратора активные.

При выбранном расстоянии l/8 между вибраторами наилучшая односторонняя направленность антенны получается тогда, когда ток в заднем вибраторе (рефлекторе) отстает от тока в переднем вибраторе (директоре) на 225°.

Коэффициент усиления двухэлементной антенны с обоими активными элементами эквивалентен усилению полноразмерной трехэлементной антенны с пассивными директором и рефлектором.

При одинаковых значениях коэффициента усиления двухэлементная система легче, проще в конструктивном отношении и обладает меньшим моментом инерции и парусностью. Антенна с активным питанием позволяет получить большее подавление излучения назад.

Мой вариант антенны изготовлен из дюралюминиевых труб Д16Т.

Основание каждого элемента диаметром 30 мм, конец элемента 16мм. Рефлектор 1100 см, директор 920 см. Траверса сечением 50х50мм, алюминиевая труба длиной 2.7м. Вес конструкции - 12 кг.

Высота установки антенны над землей 8 метров, не идеал. Но это предел для этого телескопа с защелками.

После тщательной настройки данные КСВ:
14.000 - 1.6
14.180 - 1.1
14.300 - 1.7

Работа в эфире велась трансивером Yeasu FT-817, с выходной мощностью 5 ватт. Первое QSO было с UA3PKF , Евгений из под Тулы, с дачи, антенна Spider. Я к нему подошел на общий вызов с мощностью 5 ватт. Я получаю рапорт 59+10 дб, он был очень удивлен когда я ему передал что работаю мощность 5 ватт. Далее я снижаю до 0.5 ватта, т.е. минимум. Получаю от Евгения рапорт силы сигнала по S-метру 55-57 тут он уже в шоке и говорит мне "Ты знаешь, я аж закурил" :) Рассказываю ему про антенну....

17 мая 2015, в период с 15 до 18 мск я провел еще десяток связей SSB с Москвой, Санкт-Петербургом, Уфой. Все отмечают, что звучит как 100 ватт:) а когда я перехожу на 0.5, то похоже больше что QRP, а переход с 0.5 на 5, корреспонденты отмечают, что как будто 100 ватт добавил. Направление антенны - север, чуть западнее.

Как все отмечали, и я в том числе, что прохождение было на очень хорошее в этот день
(Inverted V этого диапазона установленный на этом же месте давал значительно худший результат).

По приему, антенна также радует - сигналы резко выделяются, как бы "столбами" на общем фоне эфирного шума, которого очень мало. Антенна установлена в ст.Суворовская, LN14HE, моя выездная позиция /P.

Получил массу положительных эмоций и впечатлении от проделанной работы, но самые интересные QSO еще впереди!

Использованная литература:
Ротхаммель К. Новые радиолюбительские антенны.— Радио, 1965, № 11, с. 20—23
Снесарев А. Антенна с активным рефлектором.— Радио, 1968, № 9, с. 17, 18.
Козлов Ф. Об антенне с активным рефлектором.— Радио, 1972, № 9, с. 22

73!
Андрей, RN6HI
г.Ессентуки

Оказывается, можно создать волновой канал,не требующий настройки. Большинство описаний антенн «волновой канал» (Яги/Yagi) предусматривают согласующее устройство Гамма или Омега, поскольку предполагается, что антенна имеет волновое сопротивление меньше волнового сопротивления питающей линии, в качестве которой обычно используется коаксиальный кабель 50 или 75 Ом.

В процессе моделирования антенн при помощи программы я выяснил, что можно спроектировать антенну с волновым сопротивлением 50 Ом, что точно соответствует сопротивлению кабеля, и тогда отпадает необходимость в согласующем устройстве. Возможно другим это моё «открытие» известно давно. Что это даёт? Во-первых, настройка гаммы или омеги – дело хлопотное. Во-вторых, гамма или омега являются частотно-зависимыми элементами и поэтому могут «затушевать» настройку (подгонку) элементов антенны и даже сузить её рабочий диапазон. Так зачем же эту гамму применяют? Она нужна тогда, когда волновое сопротивление антенны меньше 50 Ом. Зачем же делать меньше? Да это получается само собой в процессе настройки антенны, который традиционно заключался в подгонке длины рефлектора с целью достичь максимального подавления заднего лепестка диаграммы направленности и в подгонке длины директора (директоров) с целью получить максимальное усиление. После нескольких проб (иногда десятков)можно было получить удачное сочетание этих параметров, и тогда эта антенна получала признание, публиковалась и даже получала название, например, квадраты UA4IF, Яги K2PV и т.д. При этом не учитывались местные условия. Например, при наличии уклона местности 2-3 градуса можно получить в этом направлении прибавку усиления больше, чем от добавления одного или даже двух директоров. Вернёмся к свойствам антенны. При приближении размера директора к размеру излучателя усиление антенны растёт, её сопротивление уменьшается, а рабочая полоса частот сужается:

Если учесть, что согласующее устройство тоже имеет рабочую полосу, которая может не совпасть с полосой рабочих частот антенны, то картина окажется хуже, чем мы видим на рисунке для вариантов R1=25 Ом и R2=12.5 Ом. Если настраивать КСВ приходится не на рабочей частоте антенны, а потом поднимать антенну, то резонансная частота обязательно сдвинется килогерц на 100. Для антенны R3 = 50 Ом это не так опасно, поскольку на частотах +/- 100 КГц от резонансной её КСВ всё ещё небольшой, а для антенн с более узким рабочим диапазоном этот сдвиг резонанса может оказаться неприемлемым.

Зависимость от частоты коэффициента усиления (средняя линия), отношения «зад-перед» (пунктирная линия) и КСВ (нижняя сплошная линия) для антенны с волновым сопротивлением 50 Ом:

Эти же параметры для антенны R=12,5 Ом. Первая антенна обладает значительно большей равномерностью параметров по диапазону. Правда, со второй антенной можно удивить коллег большим подавлением заднего лепестка на частоте 14,090 МГц:

В реальных условиях, за счет влияния земли у антенны формируется лепестковая диаграмма направленности, форма которой кроме прочего зависит от высоты подвеса антенны над землёй. Мы будем подразумевать высоту подвеса равной одной длине волны:

Отметим, что значение коэффициента усиления в реальных условиях значительно больше, чем в свободном пространстве (в нашем случае 14,1dBi для ант R3=12,5), в то время как разница в усилении у трёх наших антенн в основном сохраняется:

Если прирост от 6.9 до 8.5 dBi кажется большим, то в реальных условиях разница между 12.5 dBi (ант R3=50) и 14.1 dBi (R1=12,5) уже не кажется такой уж значительной. Существенным является то, что угол подъёма главного лепестка для всех трёх антенн остаётся тем же, 14 градусов. При этом антенна №3 с R=50 Ом лучше согласована на краях диапазона, и поэтому лучше «принимает» мощность от передатчика.

Теперь воспользуемся программой YO (Yagi optimiser), чтобы посмотреть свойства антенн при дальних связях. Будем считать, что дальние связи проводятся при угле излучения 5 градусов к горизонту, как и принято по умолчанию в программе, хотя это значение можно и изменять. Вспомним также, что все наши три антенны имеют максимальное излучение под углом 14 град. Усиление антенн 1, 2 и 3 на угле излучения 5 град соответственно равны 4.38 dBd, 4.96 dBd и 5.79 dBd. Если разница в усилении между антеннами 1 и 3 в свободном пространстве составляет 1.66 dBi, а при высоте подвеса равной l она составляет 1.61 dBi, то на угле 5 град она уменьшается до 1.41 dBd. Можно предположить, что просто расчёты не очень уж точные, но тенденция всёже прослеживается: при работе с дальними корреспондентами прирост усиления за счёт изменения длины элементов меньше, чем обычно указывается в характеристиках антенны, т.е. усиление в свободном пространстве.

Подытоживая вышеизложенное можно сказать, что усиление антенны не является единственным или главным критерием её качества, при этом подразумеваются варианты антенн с одинаковым числом элементов и одинаковой длиной траверсы.

Иногда важными свойствами считаются широкополосность и минимизация помех телевидению.

Для антенны с разрезным вибратором можно предложить согласующее устройство для некоторых фиксированных значений волнового сопротивления, а именно, для 37.5 Ом и 25Ом.
Устройство представляет собой два последовательно соединённых отрезка кабеля длиной l/12 (электрическая длина, а не физические размеры). Ближний к антенне орезок кабеля имеет волновое сопротивление линии питания (у нас 50 Ом), а следующий отрезок – сорпотивление антенны, т.е. 37.5 или 25 Ом. Такие сопротивления можно получить соединяя два куска кабеля параллельно: 75/2=37.5 или 50/2=25. Устройство компактное, не требует настройки и легко защищается от атмосферных воздействий.

Существует два варианта Яги: с элементами изолированными от траверсы и с неизолированными элементами. В последнем случае программа Quick Yagi может внести поправку на длину элементов. Правда, разрезной вибратор обязательно изолируется, иначе он становится «неразрезным».

Суммируя сказанное выше можно рекомендовать следующую процедуру проектирования и постройки антенны.
1. Задаемся конечной целью: какую антенну нам надо.
— а. широкополосная антенна, охватывающая как SSB, так и телеграфный участки диапазона. При этом у нас нет желания (или возможности) опускать антенну для подстройки. Тогда лучше всего подойдёт антенна с волновым сопротивлением 50 Ом и небольшим усилением.
— б. есть возможность опускать антенну для подгонки в случае отклонения от заданных параметров. Тогда задаёмся сопротивлением 35 Ом со средним коэффициентом усиления.
— в. нам нужна узкополосная антенна для телеграфного участка с максимальным усилением. Задаёмся сопротивлением 25 Ом с достижением высокого коэффициента усиления.
2. Сколько элементов должна иметь антенна? Если длина траверсы (бума) меньше 0,4 длины волны, то нет смысла делать больше 3 элементов. Если задаёмся сопротивлением 50 Ом, то расстояние «Рефлектор-вибратор» лучше взять не менее 0,15 дл. волны, а при R=25-35Ом лучше взять поменьше.
3. Запускаем программу в режиме автоматического или ручного проектирования с заданным количеством директоров (можно с количеством «0» для двух элементов).
4. Запускаем режим оптимизации по усилению. Получим результат с сопротивлением 27-35 Ом.
5. Включаем оптимизацию ширины полосы с параметром «широкая». Сопротивление слегка повысится.
6. Приступаем к ручному редактированию размеров антенны для достижения ТОЧНОГО значения желаемого сопротивления. Варьируем размерами рефлектора и директора (директоров), а также и расстояниями, периодически проверяя полученную диаграмму направленности и кривую КСВ. Можно спроектировать несколько антенн с одинаковым сопротивлением и после сравнения остальных характеристик выбрать лучшую.
7. После изготовления и установки измеряем сопротивление. Если оно соответствует проектному, то больше ничего проверять не надо, все остальные параметры также получатся. Если сопротивление отличается от расчётного, надо смоделировать на компьютере, на сколько требуется изменить длину директора (и какого директора, если он не один). Обычно это незначительная величина. Никаких настроек подавления и усиления делать не надо, это может только ухудшить параметры антенны.

Желающим моделировать Яги на компьютере я бы советовал применять именно программу WA7RAI (ссылка дана выше), а не ММАNА, которая более универсальна, но в случае с Яги она слабее специализированной программы QUICK YAGI.

Антенна с разрезным вибратором может использоваться на частотах, отличных от её резонансной частоты. Простейшим способом является просто подстройка П-контура передатчика. При этом конечно не следует ожидать максимальной отдачи, да и помехи телевидению вполне возможны. Однако для некоторых сочетаний F(ant)+F(tx) можно получить неплохие результаты. Напрмер, антенна для 18.1 МГц работала без помех ТВ на частоте 24,9 МГц и похуже на 21 МГц. Но этот способ неприемлем для современных трансиверов, несмотря на наличие тюнера – не стоит рисковать! Можно добиться на выходе передатчика КСВ не более 1,5 путём подключения к кабелю короткозамкнутого шлейфа длина которого вместе с кабелем должна быть кратна l /2 за вычетом половины длины разрезного вибратора L=l /2*n – L1:

Здесь l — длина волны, на которую хотим перестроить антенну;
L1 – половина длины вибратора перестраиваемой антенны.
Расстояние до точки подключения можно рассчитать по номограммам, представленным у Ротхаммеля для короткозамкнутых шлейфов.
Можно применить выносной тюнер с большим диапазоном перестройки импеданса.

Если мы перестроим антенну для 28 МГц (её излучающий элемент) на частоту 24,9 МГц, то её рефлектор теперь будет работать как директор, и максимум излучения будет в обратном направлении тому, которое было на 28 МГц.

Диаграммы направленности антенны R=50 Ом на трёх частотах: 14,000, 14,150 и 14,250 МГц:


то же для антенны R=12,5 Ом:

Работа с программой QUICK YAGI (Qy4)

Запускается в DOS или FAR (Виндоузовский эмулятор DOS) файлом qy4.exe
Открывается первая страница меню:
Auto mode menu — автоматическое проектирование
Manual entry — ручной ввод
With tapered el’s — с элементами переменного диаметра

Команда со стрелкой – по умолчанию. При нажатии начальной буквы команды (A, M или W) выполняется эта команда
Внизу:
Ctrl+Q : Quit = выход из программы (Y-Да, No-Нет)
Esc : To Main = переход в главное меню
F1 : files = вызов файлов антенн из памяти
F2 : Options = варианты

При нажатии клавишу А входим в подменю меню автопроектирования
Auto- Options настройки режима авто
Spacing (Directors) — расстояния (директоры)
Length (Directors) — длина (директоры)
Default len & space — длина и расстояния по умолчанию
Auto design of Yagi — атопроектирование Яги

При нажатии в этом подменю на А входим в режим автопроектирования
Optimized Spacing — оптимизированные расстояния
Max FB & Bandwidth – максимальные соотношение «вперёд/назад» и полоса пропускания
(W/Default Spacings) (с расстояниями принятыми по умолчанию)
Tab: Tapered diameters N ступенчатый диаметр — нажатием клавиши Tab (табуляция) переключаем No – Yes
Spacebar: View changes N просмотр изменений — нажатием клавиши «пробел» переключаем
No – Yes

Например, оставляем оба параметра No и нажимаем клавишу “Enter”

Появляется строка: OPERATING FREQUENCY (рабочая частота)
Вводим 14.2 и “Enter”
Will all elements be the same diameter ?Будут ли все элементы одного диаметра?
“Y” “Enter”
# of directors – число директоров
1 “Enter”
EL DIAM, mm – диаметр элементов в мм
30 “Enter”
появляется проект антенны с длинами элементов, расстояниями, а также параметрами в правом окне:
FORWARD GAIN
F TO B RATIO
INPUT IMPEDANCE
25.8 +j 11.2 Ohm (25.8 активное сопр + 11,2 реактивная составляющая)
ARRAY LENGTH (длина антенны в метрах)
В нижнем правом окне:
Select Optimize (выбрать параметр оптимизации)
Best gain/pattern – наилучшее соотношение усиления/подавления
Spacing only – только расстояния
Lengths only – только длины
Например, выбираем «В» и появляется:
Select Target F/B (выбрать желаемое подавление)
A 35
B 30
C 25
Например, выбираем 25 и нажимаем С:
Появляется
Choose Bandwidth
Wide — широкая
Average — обычная
No changes — без изменений
Нажимаем W и получаем окончательный проект антенны со значением реактивной составляющей 0.
Теперь можно записать эти данные через клавишу F1 (file):
Get saved files – вызвать файл из сохранённых
Save this file – сохранить этот файл
Print this file – распечатать этот файл
Delete a file – удалить файл
Нажимаем S:
Enter a FILE name (8 letters max) 20M3ELE (мы задаём имя 20м3эле)
“Enter”
В нижнем окне появляется имя файла и возможность отменить путём нажатия Esc
“Enter” – сохранён.

Теперь мы можем отредактировать данные вручную, например, чтобы подогнать сопротивление под 50 или 25 Ом. Можем изменять длины директора и рефлектора, а также меняя расстояния. При этом можно каждый раз смотреть не только числовые значения усиления и подавления, но и кривые КСВ, усиления и подавления в зависимости от частоты. Можно сохранять различные варианты и потом выбрать из них желаемый, или же просто понаблюдать влияние различных параметров на свойства антенны.

Набираем в окошечке рефлектора 10.8 “Enter”, в окошке директора 9.4 “Enter” Получаем:
Input Impedance 51 +j 0.5 Ohm

Чтобы убрать реактивную составляющую 0,5 Ом делаем оптимизацию, для чего нажимаем F4 и появляется подменю:
Bandwidth – ширина полосы
Driven element – активный элемент
Gain /FB/Pattern – усиление/подавление/ диаграмма
Нажимаем “D” и программа меняет длину активного так, что j=0, а сопротивление 50,9 Ом чисто активное (на данной частоте)
Нажимаем F3 и смотрим диаграмму в гор плоскости (на данной частоте)
Нажимаем Esc и возвращаемся в меню.
Нажимаем F6 и получаем таблицу параметров в зависимости от частоты
Внизу видим строку команд:
P: print (печать) G: graph (графики) B: BW plot (ДН от частоты) Esc: exit
Нажимаем G и получаем совмещённый график КСВ, усиления и подавления в зависимости от частоты.
Разберём ещё опцию F2.
Подменю:
Change to Ft/In – изменить метры на футы/дюймы
Fed element options – параметры активного элемента
Scaler – масштабирование (по диапазонам)
Element compensation – компенсация элементов (если не изолированы от траверсы)
Нажимаем F:
Simple dipole – простой диполь
Folded dipole – петлевой вибратор
Exit no change – выход без изменений

Можно выйти из программы и запустить файл QYUTILS.EXE. Там расчёт гамма-согласователя, хотя я не пробовал его, так как предпочитаю разрезной вибратор, который исключает реактивные элементы типа конденсаторов и снижает помехи ТВ.

Ну, вобщем пробуйте разные режимы. Программа написана очень грамотно и устойчива к нестандартным ситуациям. После небольшой практики поймёте, что она в 10 раз легче, чем ММАNА и даёт в 10 раз точнее результат.

В продолжение темы:
Apple

Информация о марке, модели и альтернативных названиях конкретного устройства, если таковые имеются. ДизайнИнформация о размерах и весе устройства, представленная в разных...

Новые статьи
/
Популярные