Современная УКВ Long Yagi антенна от DK7ZB. Самодельная дециметровая антенна «волновой канал» из металлопласта 7 элементная антенна 2 и 4 каналов

Известная в СССР антенна «волновой канал» может иметь и другие названия: директорная, Яги и Уда – Яги .

Последние таинственные сочетания слов - это фамилии двух японских изобретателей, которые в 1926 году создали эту антенну.

Как правило, это основной тип антенн, которые в настоящее время используются для приёма телевизионных программ на расстоянии до 70 километров от передатчика, как в метровом, так и дециметровом диапазоне волн. Будущее за вещанием именно в дециметровом диапазоне, где помимо основных программ вот уже несколько лет идут передачи в цифровом формате и в этом же режиме уже передаются все программы, которые занимают пока ещё метровый диапазон (50 -220 МГц).


Наступило время малогабаритных антенн диапазона 480 – 800 МГц, ибо, чем выше частота, тем меньше длина волны и, следовательно, меньше размеры самой конструкции, и нет никакого смысла держать на шесте громоздкие и дорогие антенны.

На сегодня не все покупные антенны внешне похожие на «волновой канал» обеспечивают уверенный приём в дециметровом диапазоне. Чтобы разобраться в происходящем я решил сделать самодельную антенну из металлопласта, а для удобства собрать её трансформируемой, чтобы на практике убедиться, как её элементы влияют на параметры приёма.

Для этого вытаскиваю на белый свет из прошлого века пожелтевший листок из старинного советского справочника радиолюбителя, и начинаю делать самодельную антенну, которую ещё мастерили наши отцы и деды.

Как образец я сделал комнатную или чердачную антенну, и, забегая вперёд скажу, что количество элементов с запасом хватило, чтобы без усилителя принять мультиплексные пакеты на уровне мансардного окна деревянного дома, на расстоянии 90 километров от Останкино в низине.

В качестве элементов антенны я использовал металлопласт с диаметром 16 мм, материал, продающийся на строительных рынках. Это высококачественная алюминиевая трубка со всех сторон обтянутая пластиком.

Элементы антенны.

1.Активный петлевой вибратор, его периметр равен длине волны, а входное сопротивление 292 Ом. Максимальная ширина рабочей полосы частот составляет +/- 20 процентов (для средней частоты 600 МГц рабочая полоса частот будет в пределах 480 – 720 МГц).

2.Рефлектор. У современных антенн их бывает несколько.

3.Директоры. Их количество в основном у самых широко распространённых антенн доходит до 12 штук. Считается, что чем их больше, тем выше коэффициент усиления антенны и уже диапазон. У девятидиректорной дециметровой антенны из справочника, коэффициент усиления составляет от 11,5 до 8,5 дБ, и его величина падает с ростом частоты. А чтобы добиться прироста коэффициента усиления на 2 дБ, стрелу антенны с наращенными директорами придётся увеличить в два раза. Правда, таких длинных антенн я ещё не встречал.

Конструктивные части антенны.

4.Стрела – часть конструкции, которая служит для крепления элементов антенны. Вдоль стрелы находятся точки нулевого потенциала, поэтому используемый материал не влияет на параметры антенны и может быть выполнен из металла или диэлектрика, например, из дерева или пластика. Если антенна будет эксплуатироваться вне помещения на мачте, то стрела обязательно должна быть металлической, и точка крепления середины вибратора к стреле должна иметь отличный электрический контакт для дальнейшего заземления антенны.

Директорная антенна.

5.Скобы крепления элементов антенны.

6.Коаксиальный кабель с волновым сопротивлением 75 Ом, например RG -59 или РК 75 - 3,7 – 35 М. На частотах дециметрового диапазона важно качество кабеля снижения, так как чем длиннее кабель, тем сильнее потери в нём.

7.Симметрирующе-согласующее устройство, выполненное в виде U – колена из того же коаксиального кабеля с волновым сопротивлением 75 Ом. Длина этого кабеля в виде буквы U равна от 0,33 до 0,5 длины волны. Согласно старым справочным данным данное согласующее устройство обеспечивает согласование не более +/- 20 процентов от центральной частоты, что составит диапазон 480 - 720 МГц, а учитывая и диапазон согласования петли, общая максимальная полоса рабочих частот антенны составит 480 – 650 МГц.

U -колено - симметрирующе-согласующее устройство, длина которого теоретически равна половине длины волны. Учитывая материал изоляции кабеля, используют коэффициент укорочения, который для коаксиального кабеля из вспененного полиэтилена составляет около Ку = 1.51 (указывается в характеристиках на данный кабель). Поэтому реальная длина U -колена будет меньше в 1.51 раз, что составит 0,33 длины волны. В процессе регулировки, уменьшая длину кабеля, добиваются оптимального согласования по минимальному КСВ в полосе частот. Первоначальная длина согласующего устройства 250 мм.

8. Изолирующая коробка.

Изготовление антенны.

Исходные размеры даны на рисунке. Как видно они не сильно критичны. Выбирая частоту, я учёл из практического опыта изготовления простых антенн из металлопласта его характеристики, способные уводить настройку частоты вниз примерно на 50 МГц и выбрал для удобства округлённую расчётную частоту 600 МГц, чтобы настроить антенну на диапазон московских мультиплексных пакетов 498 – 578 МГц.

Испытание антенны.

Осенняя изморось и туман – вот то радостное настроение, самое подходящее время для испытания самодельных антенн. Дополняют тяжёлые условия испытаний – мокрая крыша из мягкой кровли, не сброшенная холодами листва деревьев и низкая болотистая местность, окружённая лесами Владимирской области в 90 километров от Останкино. В полдничное время, под звук дождя, удобно устроившись в мансарде, я словно мальчишка, устанавливающий корабельные мачты на каравеллу собирал антенну. Вот уже перещелкиваю аналоговые телевизионные каналы дециметрового диапазона, неплохо для самоделки (от «Перца», 487 МГц до «Пятницы», 607 МГц просто отлично). Именно на эти частоты я планировал сделать антенну.

Настраиваясь на один из каналов, трансформирую антенну, оставляя её без крайнего элемента-директора. Качество изображения не меняется.

Вытаскиваю второй элемент-директор, и замечаю появления зашумлённости, что указывает на уменьшение усиления антенны.

Удаляю рефлектор, оставляя одну петлю – совсем плохо.

Возвращаю элемент-директор на место. Такая же картина качества изображения, что и с рефлектором.

Выводы.

Антенна имеет ограниченный диапазон усиления. Трехэлементная антенна вполне достаточна для моих условий приёма.

Теперь подключаю цифровую приставку к вновь восстановленной антенне. Как и ожидал, с запасом по усилению, проходят 3-и мультиплексных пакета. Опять вытаскиваю по очереди элементы директоры и слежу за уровнем сигнала в процентах.

Крайний ни на что не влияет.

Вытаскиваю второй элемент, и уровень сигнала возрос на процент!?....

А в это время «директорная» покупная антенна «Локус - Про», что в гостевом домике брала только один из трёх мультиплексных пакета. Звоню соседу, который в 2-х километрах от меня, у него крутая покупная антенна с тремя директориями, а он говорит, что сейчас цифровое вещание не работает….

Выводы.

Для приёма эфирного цифрового телевидения нет необходимости использовать сложные громоздкие антенны. Сама антенна не требует слишком большой высоты установки. Не редко сбои при приёме эфирного цифрового телевидения бывают из-за некачественного антенного усилителя. Надежнее будет использовать несколько малогабаритных антенн без усилителя для каждого телевизора, если таковые имеются.

Если сравнивать мои самодельные антенны «волновой канал» с 4-х петлевой антенной «Олимп 2014», то кольца пока в лидерах, так как перекрывают весь дециметровый диапазон и неплохо зарекомендовали себя при работе в плохих погодных условиях на предельных расстояниях приёма.

Так почему же в плохую, дождливую погоду остронаправленные антенны, с большим коэффициентом усиления, с отличной помехозащищённостью повели себя неадекватно?

Понять это явление можно, если представить приёмную антенну как передающую. Тогда антенна - это фонарь с узким сфокусированным лучом, а чем больше директоров в антенне, тем более острая её диаграмма и лучше фокусировка луча, а этот сфокусированный луч просто упёрся в мокрые верхушки деревьев или в дождевую тучу и растворился там. При более широкой диаграммы направленности, то есть при меньшем усилении антенны, когда элементы–директора отсутствуют, фокус луча более расплывчатый, зато охватывает большую зону приёма, и широкий луч просто обходит тучу по кругу, или проходит между мокрыми верхушками деревьев и тучей.

Москвичам всегда везёт, у них все цифровые каналы рядом! Им антенна «волновой канал» подойдёт и в упрощённом виде. Да им любая антенна подойдёт! А как быть нам? У нас разнос между мультиплексными пакетами более 200 МГц! Складывать антенны этажерками, где каждый этаж работает на свой диапазон! Именно эти комментарии я уже предвидел и даже начал складывать антенны этажеркой. Но что из этого получилось, вы узнаете позже. Впрочем, уже неплохо получается.

Martin Steyer, DK7ZB, подготовил очень интересный обзор современных концепций и достижений разработчиков таких

антенн. С помощью компьютерного моделирования можно с высокой точностью определить размеры антенн, в том числе антенн Long Yagi, которые предназначены для проведения дальних наземных и ЕМЕ-радиосвязей. Правда, Gunter Hoch, DL6WU, еще 30 лет назад экспериментально разработал конструктивные основы эффективной антенны Long Yagi. Его разработка этой темы до настоящего времени остается «стандартом» для этого типа антенн. До появления работ Гюнтера были распространены гомогенные антенны, у которых директоры имели одинаковую длину и равные расстояние между элементами. Такие антенны были не оптимальны по усилению и имели значительные боковые лепестки в диаграмме направленности.

DL6WU установил, что постепенное увеличение расстояния между директорами до максимального 0,45Х при одновременном уменьшении их длины приводит к росту усиления и улучшению диаграммы направленности антенны. Кроме того, он также определил поправочные коэффициенты при монтаже элементов на проводящем «буме», установленные на основе трудоемких экспериментов, которые до сегодняшнего дня невозможно промоделировать компьютерными программами, доступными для радиолюбителей. Во всех формулах для расчетов используются эти поправочные коэффициенты.


Для получения оптимального компромисса между усилением, шириной рабочей полосы частот и диаграммой направленности Мартин, DK7ZB, в 1997 г. представил ряд антенн Long Yagi, использующих т.н. «технику 28 Ом », и разработал их теоретические основы. Эти антенны Мартин постоянно совершенствует. Их характеристики, как правило, проверены. О том, что эти антенны эффективны, свидетельствуют результаты многих ЕМЕ и контест групп, использующих такие антенны.


Другой немецкий радиолюбитель, Reiner Bertelsmeier, DJ9BV, выяснил, что не только коэффициент усиления, но также и нежелательный прием шумов боковыми и задними лепестками диаграммы направленности антенны играет большую роль в оценке ее эффективности. Он ввел понятие отношения усиления антенны (G) к температуре шумов (Т). Это отношение чаще всего дается в логарифмической шкале, т.е. в децибелах.


Существует два противоположных подхода к решению проблемы собственных шумов антенны. В одном случае антенны проектируются в расчете на максимальное усиление, что приводит, в частности, к их узкополосности. То, что эти антенны, обязательно имеющие явно выраженные боковые лепестки диаграммы направленности, и при использовании которых не обращается внимание на отношение G/T, эффективны в 2-метровом диапазоне, подтверждают высокие результаты, достигнутые некоторыми радиолюбителями в ЕМЕ-радиосвязи.


Второй подход подразумевает значительное подавление боковых лепестков в диаграмме направленности, что, однако, приводит к уменьшению усиления антенны.


Между тем, Lionel, VE7BQH, при оценке параметров антенн 2 метрового диапазона рассматривает две новые величины: активный импеданс вибратора на частоте 144,1 МГц, а также КСВ на частоте 145 МГц. Вторая величина фактически свидетельствует о широкополосности антенны. В основном, в антеннах Long Yagi график КСВ не является равномерным около заданной частоты. Верхнюю граничную частоту во многом определяют размеры директоров. Для получения оптимальной эффективности антенны директоры должны иметь длину, которая соответствует заданной рабочей частоте. Только на этой частоте получается максимальное усиление.

График КСВ 12-элементной антенны DK7ZB

12-элементная антенна DK7ZB

На рис.1 показан график КСВ 12-элементной антенны DK7ZB (рис.2) для диапазона 2 м. Расчетная резонансная частота составляет 144.3МГц, и выше этой частоты КСВ быстро растет. Расширить рабочую полосу частот можно ценой снижения эффективности директоров, но тогда снизится усиление на рабочей частоте. Широкополосность антенны Long Yagi куда больше зависит от расположения директоров, нежели от типа вибратора. Тип вибратора (простой диполь, сложный диполь или петлевой) имеет второстепенное значение.

С точки зрения усиления конструкторы антенн очень интенсивно спорят на тему совсем иного параметра - сопротивления излучения, которое зависит от распределения токов в вибраторе и, главное, от влияния соседних пассивных элементов. Дополнительную роль играют омические потери в результате проявления поверхностного (скин) эффекта.


В основном, существуют два метода достижения согласования питающего кабеля (чаще всего 50 Ом) с входным сопротивлением антенны. Как правило, антенны Yagi (как короткие, так и Long Yagi) с большим усилением и малой шириной рабочей полосы частот имеют сопротивление излучения менее 50 Ом. В коротких антеннах согласование с 50-омным кабелем достигается установкой очень близко к вибратору дополнительного согласующего элемента. Такой элемент увеличивает сопротивление излучения. Это не типичный директор, а скорее, элемент «открытого рукава» (open-sleeve), который надо рассматривать как сложенную и сжатую систему вибратора. При этом надлежит считаться с дополнительным расходом материала, весом антенны и увеличенным ветровым сопротивлением конструкции. Тем не менее, при тонких элементах УКВ антенны эти соображения играют второстепенную роль.


Второй метод согласования подразумевает, что антенна имеет определенное «родное» сопротивление, которое приводится к сопротивлению 50 Ом установкой трансформатора. При тщательно изготовленном узле трансформации сопротивлений потери оказываются не больше, чем в «чистой» 50-омной системе, что было подтверждено измерениями на трансформирующих проводах на кабелях с малыми потерями.


Целью проектирования низкотемпературной Yagi, выполненного Ljubusa Рора, YU7EF, является значительное подавление первого бокового лепестка диаграммы направленности.

Диаграмма направленности в горизонтальной плоскости 10-элементной Yagi диапазона 2 м

На рис.3 показана диаграмма направленности в горизонтальной плоскости 10-элементной Yagi диапазона 2 м, разработанной YU7EF и имеющей длину бума 5,3 м при усилении 12,57 дБд. Хорошо виден сильно подавленный боковой лепесток и сравнительно слабо подавленный задний.


При моделировании петлевого диполя в качестве вибратора в антеннах Long Yagi Justin Johnson, GOKSC, обратил внимание на один феномен. В прежние годы в антеннах Yagi преимущественно использовались прямоугольные петлевые вибраторы. Они размещались вертикально и чаще всего запитывались в середине. Попытки изменения этой устоявшейся конструкции не приносили практически никакой пользы. Однако G0KSC установил прямоугольный петлевой вибратор в горизонтальной плоскости между рефлектором и директором (рис.4).

Прямоугольный петлевой вибратор в горизонтальной плоскости между рефлектором и директором

Питается антенна в середине одной из сторон вибратора (чаще всего тыльной), и имеет входное сопротивление 50 Ом. Впоследствии это устройство назвали Loop-Fed-Yagi. При незначительно большей длине бума по отношению к традиционной антенне Yagi такой способ возбуждения приводит к большей широкополосности при несколько меньшем усилении антенны.


В настоящее время появляются новейшие разработки. Dragoslav Dobricic, YU1AW, обратил внимание на конструкцию петлевого вибратора от G0KSC и еще раз модифицировал питание антенны. Отправной точкой для оптимизации параметров антенны является тот факт, что конструкция и местоположение вибратора (простой либо петлевой) являются компромиссом между необходимостью максимального подавления заднего лепестка диаграммы направленности, получения максимального усиления и обеспечения требуемого входного сопротивления антенны. Для разрешения этой проблемы YU7AW предложил горизонтальный тройной петлевой диполь (рис.5).

Горизонтальный тройной петлевой диполь

Одна часть этого диполя служит для уменьшения расстояния до 1-го директора и оптимизации этого расстояния. Часть петлевого диполя, соседствующая с рефлектором, может использоваться для оптимизации подавления заднего лепестка диаграммы направленности, а средняя ветвь диполя - для питания антенны. Входное сопротивление антенны можно сделать 200 Ом, что обеспечивает очень простое согласование с 50-омным коаксиальным кабелем.


Конструкция тройного петлевого вибратора, конечно, довольно сложна в реализации, но в результате можно получить большую широкополосность, чем в традиционном вибраторе, и лучшее подавление задних лепестков диаграммы направленности.


YU1AW утверждает, что тройной петлевой вибратор можно установить на существующих высокоэффективных антеннах Yagi и, соответственно, значительно улучшить их параметры (в частности, подавление заднего лепестка). К сожалению, на момент подготовки настоящей публикации отсутствуют сведения о практической реализации этой идеи.

Двухэлементная однодиапазонная антенна HB9CV на диапазон 7 МГц или 10 МГц с активным питанием элементов

Начато производство новой уникальной на нашем рынке двухэлементной HB9CV антенны SAY2-30CV, SAY 2-40CV . Особенностью антенны является активное питание обоих элементов с запиткой по одному кабелю. Геометрические размеры максимально приближены к оптимальным для всех диапазонов. За основу взяты давно себя зарекомендовавшие укороченные диполи SAD40 и SAD4030. Так как мощность передатчика делится между всеми двумя элементами рабочая мощность антенны возросла до 5000 Вт. По своим параметрам антенна практически превосходит полноразмерные 2-х элементные волновые каналы. Применение для согласования короткозамкнутых шлейфов позволяет значительно уменьшить влияние статического электричества. Достаточно лёгкая антенна удобна для установки в ограниченном пространстве с использованием облегчённых мачт и не дорогих поворотных устройств. Длина упаковки - 3 м. Все элементы изолированы от траверсы. Антенна надёжно сделана с учётом накопленного нами опыта длительного производства антенн типа волновой канал.

Ролик с параметрами антенны на Youtube

Рабочие диапазоны - 7 МГц или 10.1 МГц

Элементов на диапазон - 2

Усиление антенны - 4,9 дБд (в свободном пространстве) и до 10-11 дБи в зависимости от высоты установки

Отношение F/B не хуже - 18 - 25 дБ в зависимости от высоты установки и трассы

Полоса пропускания по КСВ 1.5 - 130 кГц (7 МГц)

Максимальная мощность - 5000 Вт SSB

Входное сопротивление - 50 Ом Антенна запитывается через балун 1:1 любой конструкции

Длина траверсы - 4.2 м

Максимальная длина элемента - 14.1м

Радиус поворота - 7.3 м

Площадь ветровой нагрузки - 0.56 кв.м

Вес антенны - 24 кГ

Стоимость антенны на диапазон 7 МГЦ - 26500 р, 10 МГц - 25500 р

2 элемента Яги на 14 мГц SAM 2-20. Походный вариант.

Изготовлена и проверена в работе облегчённая конструкция Яги 2 элемента на 20 м предназначеная для работы на выездах. Антенна имеет недольшой вес - 9.5 кг, быстро собирается и разбирается, имеет небольшие размеры в разобранном виде - 1.5 м. Возможно изготовление такой антенны и для стационарных условий. Антенна рассчитана под высоту установки 10 м.

КСВ по диапазону не превышает 1.3.

Макс. длина элемента - 11 м

Длина траверсы - 3.3 м

Стоимость - 9000 р.

Стационарная антенна с усиленными элементами 10000 р.

Длина траверсы - 9.4 м

Вес антенны - 23 кг

Усиление - 8.4 dBd (10.55 dBi) (Свободное пространство)

Отношение F/B - до 25 dB

Радиус поворота - 5.4 м

Максимальная длина элемента - 6.2 м

Цена антенны - 18100 р.

Демонстрация диараммы направленности антенны - http://youtu.be/B-C2Q0Cuod0

Демонстрация КСВ антенны - http://youtu.be/YIW6ilD1kww

Антенна обладает отличной широкополосностью, не нуждается в настройке и принесёт удовольствие от работы на этом замечательном диапазоне начавшем "оживать".

5 элементная Яги на 14 мГц SAM 5-20. Дизайн RA3LE.

Коллектив Сов.Антенна воплотил в "железе" ещё одну удачную разработку Цыганкова Валерия Ивановича RA3LE. Это высокоэффективная 5 элементная антенна типа волновой канал для диапазона 14 мГц. Антенна обладает отличными параметрами и рассчитана по принципам эффективных УКВ антенн.



Диапазон - 14 мГц

Количество элементов - 5

Длина траверсы - 13.5 м

Радиус поворота - 8.5 м

Ветровая площадь - 1.1 кв.м.

Вес - 37 кг без учёта веса плиты крепления антенны к мачте.


КСВ (14.0 – 14.150 – 14.3) - 1.25 – 1.1 – 1.3



Цена антенны - 28000 р.

Растяжка траверсы - типа "двойной треугольник" .

Упаковка - одна коробка 3 х 0.25 х 0.25 м

5 элементов Яги на 28 мГц SAM 5-10. Дизайн RA3LE.

Новая разработка талантливого радиолюбителя RA3LE воплощена нашим коллективом. Длина антенны 7.5 м, запитка 50 Ом кабелем через симметрирующее устройство любой доступной конструкции.

Длина траверсы - 7.55 м

Вес антенны - 15 кг

Отношение F/B - до 29 dB

Фидер - 1 коаксиал 50 Ом (запитка через балун 1:1)

Цена антенны - 15500 р.

Антенна обладает отличной широкополосностью, не нуждается в настройке и принесёт удовольствие от работы на этом замечательном диапазоне начавшем "оживать". Пора готовить антенное хозяйство к новым достижениям!

SAD 1-40. Диполь диапазона 40 м.

Снова откройте для себя интереснейший диапазон 7 мГц. С антенной SAD 1-40 Вы получите настоящее удовольствие от работы с отличной малошумящей антенной, особенно в промышленных районах, где низкий уровень шумов в горизонтальной поляризации позволит ощутить замечательную глубину радиолюбительского эфира, и провести связи с корреспондентами, которых Вы на вертикальные антенны просто не слышите. Укорочение длины выполнено высокодобротной индуктивностью большого диаметра, что хорошо сказывается на КПД и широкополосности антенны. Относительно небольшие размеры и вес позволяют разместить антенну над уже существующей антенной системой.

Длина - 14.7 м

Вес - 11.5 кг


КСВ (7.0 – 7.05 – 7.1) - 1.3 – 1.1 – 1.3 (ширина полосы по КСВ 1.5 – 180 кГц)


Ветровое сопр. - 0,31 кв.м
Антенна запитывается одним 50 Ом кабелем через балун 1:1 любой конструкции.
Цена антенны 11300 р.

Цена антенны с растяжкой элемента типа "двойной треугольник" - 12000 р.

Упаковка - одна коробка 1.6 х 0.25 х 0.2 м

SAY 2-40 Двухэлементный волновой канал диапазона 40 м.

Замечательная и высококачественная антенна диапазона 40 м. С выходной мощностью 60 Вт во время "обкатки" проведены радиосвязи с радиолюбителями всех континентов. Великолепная антенна!

Основные параметры антенны SAY 2-40 2 элемента Яги на 40 м

Диапазон 40м Усиление (dBd) 3.6 Усиление (dBi) 10.5 Отношение вперёд/назад (dB) 15 КСВ 7,00 - 7,06 - 7,20 1,4 - 1,1 - 2,0 Количество элементов 2 Макс. длина эл. (м) 14.9 Длина бума (м) 5.6 Радиус поворота (м) 7.96 Фидер 1 Коаксиал 50 Ом через балун 1:1 любой конструкции Вес (кг) 30 Ветровое сопротивление при 130 км/ч 500 N / 0,62 м² / 6,8 feet² Цена 21200 руб.


SAM 3-40L Трёхэлементная полноразмерная антенна диапазона 40 м



Отличная бескомпромиссная широкополосная антенна волновой канал диапазона 40 м принесёт удовольствие от работы с редкими корреспондентами. Траверса изготовлена из Д-16Т, элементы комбинированные из АД 31Т1 (толстые трубы) и Д16Т(от 25 мм и тоньше), что позволило сделать антенну с отличными механическими параметрами. Антенна изготовлена на основании рассчётов Валерия Ивановича Цыганкова RA3LE.


Длина бума - 11 м

Максимальная длина эл. - 22 м

Радиус поворота - 12.8 м

Антенна запитывается 50 Ом кабелем через балун 1:1 любой конструкции

Цена антенны - 46000 р. SAY 3-40S - 45000 р.

SAY 2-30 Двухэлементный волновой канал диапазона 30 м.


Основные параметры антенны SAY 2-30 2 элемента Яги на 30 м


Диапазон 30м
Усиление (dBd) 3.6
Усиление (dBi) 10.5
Отношение вперёд/назад (dB) 20
КСВ
10,10 - 10,12 - 10,15 1,3 - 1,1 - 1,3

Количество элементов 2
Макс. длина эл. (м) 9.3
Длина бума (м) 3.6
Радиус поворота (м) 4.96
Фидер 1 Коаксиал 50 Ом запитывается через балун 1:1 любой конструкции
Вес (кг) 20
Ветровое сопротивление при 130 км/ч 350 N / 0,44 м² / 4,8 feet²

Цена 18800 руб.

Упаковка - одна коробка 3.1 х 0.2 х 0.2 м

SAM 3-20 3-х элементная антенна на диапазон 20 м


Красивая и удобная антенна для комфортной работы в диапазоне 14 мГц. Антенна поставляется с траверсой с растяжками типа двойной объёмный треугольник (13000 р.) и в стандартном варианте.

Длина траверсы (м) 7.4

Максимальная длина элемента (м) 11.2

Входное сопротивление (Ом) 50

Антенна запитывается через балун 1:1

Вес антенны (кг) 23

Цена антенны 12600 руб.


SAM 5-15 5-ти элементная антенна на диапазон 15 м

Очень удачная разработка Цыганкова В.И. RA3LE. Широкополосная антенна 5 эл. с высокими параметрами для серьёзной ДХ работы.

Длина траверсы - 8.5 м

Вес антенны - 17 кг

Усиление - 7.76 dBd (9.91 dBi)

Отношение F/B - до 29 dB

Фидер - 1 коаксиал 50 Ом (запитка через балун 1:1)

Цена антенны - 15700 р .

Тел. +7-916-4161489 e-mail: Данный адрес e-mail защищен от спам-ботов, Вам необходимо включить Javascript для его просмотра.

Антенна, сборка которой описана в этой небольшой статье, очень хорошо себя показывает в работе. Кроме ее эффективности, стоит отдельно выделить и простоту сборки. В общем, эту антенну можно рекомендовать в качестве эффективного инструмента работы с Wi-Fi сигналом. В продолжении — описание сборки этой антенны.

Антенна собирается либо на текстолите, либо на линейке, да-да, обычной линейке.

Вот чертёж:

Все размеры в миллиметрах. Как видите, антенна довольно маленькая. Но так и должно быть — несмотря на ее размеры, работает она весьма и весьма хорошо. Сигнал ловится просто отлично, и эффект о

Элементы YAGI – это кусочки медной проволоки или тонких медных трубок (у меня трубки или труба оцинкованная). Кабель паяется в разрыв 2-ого элемента (оплетка к одной половине, центральная жила к другой). Все довольно просто, и, повторюсь, эффективно.

После сборки антенны, для защиты от влаги и окисления, ее желательно полностью покрыть лаком. В противном случае дожди и снег могут привести к порче антенны.

Антенна запускается сразу, не требует подстройки, кроме того её размеры позволяют одеть на неё пакет – как защиту от дождя:

Прошу прощения за некачественное фото, но другого, к сожалению, просто нет. Кстати антенна закреплена на куске пластиковой — водопроводной трубы. Удачи!

За основу стэка (предполагалось 2Х2) поначалу и по неопытности была взята 7 элементная антенна DK7ZB (http://www.qsl.net/dk7zb/start1.htm). После 4 антенн были сделаны еще 4 для стэка 4Х2 и две одиночные антенны. Конфигурация 2 этажа по 4 антенны была выбрана исключительно из-за меньших требований по прочности последнего колена мачты.

Материал для антенны: квадрат 25х25х1.5 мм, трубка 8х1 для элементов и 12х1 для разрезного вибратора. Впоследствии, при изготовлении 14 элементных антенн выяснилось, что предпочтительней для элементов брать трубку 7х1 мм, она оказалась более прочной.
Материал можно купить в Химках (см. www.alros.ru с телефонами и схемой проезда) длиной до 6 метров. Пополам (по 3 м пилят бесплатно, по размеру - за небольшие деньги). Прежде чем ехать, предварительно узнайте о наличии на складе.
“Пилот МС” (север Москвы, Лианозово, сайт www.pilotms.ru) продает аналогичный материал, но 2х метровой и, реже, 3х метровой длины.
В конструкции предусмотрено, что элементы должны быть изолированы от бума и располагаться поверх него на расстоянии 2-3 мм и крепиться через специальные изоляторы коих в наших магазинах пока не найти. Поэтому крепление элементов было выполнено следующим образом:
Напилены из стеклотекстолита толщиной 3 мм пластины 50х40 мм и в них предварительно просверлены отверстия диаметром 3.5 мм.

Пластина укладывается точно по центру элемента и через отверстие в пластине просверливается только одна стенка элемента сверлом 3.5 мм, вставляется и расклепывается вытяжная заклепка 3.2Х8.

Элемент переворачивается «на спину», пластина выравнивается на элементе, сверлится второе отверстие и вновь заклепывается.


Элемент кладется на бум по месту, выравнивается по центру, сверлится вначале одно отверстие и заклепывается. Затем устанавливается прямой угол между элементом и бумом и ставится вторая заклепка.

Такое крепление позволяет очень быстро провести замену элементов при поломке с использованием старых изолирующих площадок.
И последнее по «железу»: если Вы задумали изготовить сразу несколько антенн, например для стэка, делайте по возможности одни и те же операции от начала и до конца: нарезка элементов, изготовление площадок, крепление элементов и т.д. Такой порядок повысит точность изготовления и выявит промахи.
И все в склад, до тепла!!!

Антенны на двойку-вверху, на 70 см - внизу

4х2 по 7 элементов в KO86SH- на испытании-июнь 2003 г.
Лучше сделать конфигурацию 2х4, но в этом случае нужно было бы значительно усилить последние колена телескопа…

В KO71IM (ПД 2003 команда RW3WR)

В KO71IM - за несколько часов перед падением…….
Капрон вещь хорошая, но коварная. После установки нужно несколько раз подтянуть растяжки, а еще если дождь...

Транспортировка «останков» в KO86SH….

4 по 7 элементов в KO86sh в «полевом» варианте - осень 2003 г. Расстояние между антеннами 2.5 метра.Ни антенны, ни вертикальные стойки, ни бум не растянуты.Хорошо показала себя в FD2004.

Финальная растяжка 2х2 по 14 элементов - декабрь 2003 г. Антенна выдержала ветер ок. 15 мсек, хотя порой казалось...

В продолжение темы:
Модемы

Всем привет! Сегодня отличный день и я решил рассказать о бесплатной программе для раскрутки сайта или блога. Ранее мы уже говорили о — сейчас это доступно каждому. Каждый...

Новые статьи
/
Популярные