Транзисторы отечественные биполярные. Устройство и маркировка биполярного транзистора

  • Перевод

В качестве демонстрации работоспособности концепции автор с командой создали подложки из германия на изоляторе, для создания инвертеров, содержащих сначала планарные транзисторы, а затем и FinFET-транзисторы

Почти 70 лет назад два физика из Телефонной лаборатории Белла – Джон Бардин и Уолтер Брэттейн – впрессовали два тонких золотых контакта в пластину из германия, и сделали третий контакт снизу пластины. Ток, проходивший через эту конструкцию, можно было использовать для превращения слабого сигнала в сильный. В результате появился первый транзистор – усилитель и переключатель, который, возможно, стал величайшим изобретением 20-го века. Благодаря закону Мура, транзистор развил компьютеры далеко за пределы того, что казалось возможным в 1950-е.

Несмотря на звёздную роль германия в ранней истории транзисторов, его вскоре заменили кремнием. Но сейчас, что удивительно, этот материал готов вернуться. Лидеры в производстве чипов раздумывают над заменой компонентов в самом сердце транзистора – токопроводящем канале. Идея в том, чтобы заменить кремний материалом, способным лучше проводить ток. Создание транзисторов с такими каналами может помочь инженерам продолжать улучшать показатели контуров по скорости и энергоэффективности, что будет означать появление улучшенных компьютеров, смартфонов, и множества других гаджетов в последующие годы.

Долгое время интерес к альтернативным каналам вращался вокруг соединений A III B V , таких, как арсенид галлия, состоящих из атомов, находящихся слева и справа от кремния в таблице Менделеева. И я участвовал в том исследовании. Восемь лет назад я , обозначив прогресс, сделанный в построении транзисторов на таких соединениях.


Два транзистора в инвертере на основе FinFET содержат плавниковые каналы, выделяющиеся из плоскости подложки (вверху – розовые каналы, внизу – скошенный вид на ещё один набор). Расстояния между «плавниками» вверху – десятки нанометров.

Но в результате мы обнаружили, что у подхода с A III B V существуют фундаментальные физические ограничения. А также он, скорее всего, был бы слишком дорогим и сложным для интеграции с существующей кремниевой технологией. Так что несколько лет назад моя команда в Университете Пердью начала эксперименты с другим устройством: с транзистором, канал которого выполнен из германия. С тех пор мы продемонстрировали первые контуры КМОП (комплементарная структура металл-оксид-полупроводник) . Примерно та же логика, что находится внутри современных компьютеров, только изготовленная из германия, выращенного на обычных кремниевых подложках. Мы также создали ряд различных транзисторных архитектур из этого материала. В них входят устройства из нанопроволоки, которые могут стать следующим шагом производства, когда сегодняшние лучшие транзисторы, FinFET, уже нельзя будет дальше уменьшать.

И что ещё интереснее, оказывается, что возвращать германий в работу не так сложно, как это кажется. Транзисторы, использующие комбинацию кремния и германия в канале, уже можно найти в новых чипах, и они впервые появились в 2015 году, в демонстрации будущих технологий изготовления чипов от IBM. Эти разработки могут стать первым шагом индустрии, стремящейся внедрять всё большие доли германия в каналы. Через несколько лет мы можем столкнуться с тем, что материал, подаривший нам транзисторы, помог перенести их в следующую эпоху выдающегося быстродействия.

Германий впервые изолировал и открыл немецкий химик Клеменс Уинклер в конце XIX века. Материал был назван в честь родины учёного, и всегда считался плохо проводящим ток. Это изменилось во время Второй Мировой войны, когда были открыты полупроводниковые свойства германия – то есть, возможность переключения между проведением и блокированием тока. В послевоенные годы быстро развивались полупроводниковые устройства на германии. В США производство, отвечая на запросы рынка, возросло от нескольких сотен фунтов в 1946 до 45 тонн к 1960-му году. Но кремний выиграл; он стал популярным материалом для микросхем логики и памяти.

И для доминирования кремния есть веские причины. Во-первых, его больше, и он дешевле. У кремния более широкая запрещённая зона, энергетический барьер, который нужно преодолеть для создания проводимости. Чем больше эта зона, тем сложнее току просочиться через устройство в ненужный момент и зря потратить энергию. В качестве бонуса у кремния и теплопроводность была лучше, что позволяло легче отводить тепло, чтобы контуры не перегревались.

Учитывая все преимущества, естественно заинтересоваться – зачем бы нам вообще раздумывать над возвращением германия в канал. Ответ – мобильность. Электроны в германии при комнатной температуре двигаются почти в три раза охотнее, чем в кремнии. А дырки – отсутствие электрона в материале, рассматриваемое, как положительный заряд – двигаются почти в четыре раза охотнее.


Девятиступенчатый кольцевой КМОП-осциллятор, представленный в 2015 году

То, что в германии электроны и дырки такие мобильные, делает его удобным кандидатом для КМОП-контуров. КМОП сочетает два разных типа транзисторов: p-канальные FET (pFET), канал которых содержит избыток свободных дырок, и n-канальные FET (nFET), у которых есть избыток электронов. Чем быстрее они двигаются, тем быстрее работают контуры. А уменьшение напряжения, требуемого для их передвижения, означает и уменьшение энергопотребления.

Конечно, германий – не единственный материал с такой мобильностью частиц. Упомянутые ранее составы A III B V , материалы, такие, как арсенид индия и арсенид галлия, также могут похвастаться высокой подвижностью электронов. Электроны в арсениде индия почти в 30 раз подвижнее, чем в кремнии. Но проблема в том, что это свойство не распространяется на дырки – они не сильно подвижнее тех, что есть в кремнии. И это ограничение приводит к невозможности создания высокоскоростных pFET, а отсутствие скоростных pFET сводит на нет получение быстрых КМОП-контуров, поскольку они не могут работать с очень большой разницей в скоростях работы nFETs и pFETs.

Один из вариантов решения – взять от каждого материала лучшее. Исследователи во многих лабораториях, например, Европейской организации по исследованию полупроводников Imec и Цюрихской лаборатории IBM, показали способы создания контуров, у которых каналы nFET сделаны из составов A III B V , а pFET – из германия. И хотя эта технология может позволить создавать очень быстрые контуры, она сильно усложняет производство.

Поэтому нам больше нравится простой подход с германием. Германиевые каналы должны увеличить быстродействие, а проблемы производства будут не такими серьёзными.

Как дела у германия

Чтобы германий – или любой альтернативный материал – попал в производство, необходимо найти способ добавления его на кремниевые подложки, используемые в настоящее время для изготовления чипов. К счастью, существует множество способов нанести на кремниевую подложку германиевый слой, из которого потом можно сделать каналы. Использование тонкого слоя устраняет две ключевые проблемы германия – высокая по сравнению с кремнием стоимость, и относительно плохая теплопроводность.

Но чтобы заменить кремний в транзисторе, недостаточно просто впихнуть тонкий и высококачественный слой из германия. Канал должен безупречно работать с другими компонентами транзистора.

В вездесущих современных КМОП-чипах используются транзисторы на основе МОП (металл-оксид-полупроводник – МОП-транзистор; metal-oxide-semiconductor field effect transistor - MOSFET). У него есть четыре базовых части. Исток и сток – исходная и конечная точка перемещения тока; канал, соединяющий их; затвор, служащий клапаном, контролирующим наличие тока в канале.

В реальности в качественном транзисторе присутствуют и другие ингредиенты. Один из самых важных – изолятор затвора, предотвращающий короткое замыкание затвора и канала. Атомы в полупроводниках, таких, как кремний, германий и составы A III B V , расположены в трёх измерениях. Идеально плоскую поверхность изготовить нельзя, поэтому у атомов, находящихся вверху канала, будет несколько выпирающих связей. Вам необходимо изолятор, связывающий как можно больше этих связей, и этот процесс называется пассивацией, или поверхностной протравкой. В случае некачественного изготовления можно получить канал с «электрическими выбоинами», полный таких мест, где переносчики заряда могут временно задерживаться, что понижает их подвижность и, в результате, скорость работы устройства.


Слева: nFET из составов A III B V , и pFET из германия, кусочки обеих материалов выращены на кремниевой подложке с изоляцией.
Справа: оба транзистора выполнены из германия, связанного с подложкой.

К счастью, природа снабдила кремний естественным изолятором, хорошо совпадающим с его кристаллической структурой: диоксидом кремния (SiO 2). И хотя в современных транзисторах встречаются более экзотические изоляторы, в них всё равно есть тонкий слой этого оксида, служащий для пассивации кремниевого канала. Поскольку кремний и SiO 2 близки по структуре, хорошо изготовленный слой SiO 2 связывает 99 999 из 100 000 свободных связей – а на квадратном сантиметре кремния их содержится примерно столько.

Арсенид галлия и другие составы A III B V не обладают естественным оксидами, а у германия он есть – поэтому, в теории, у него должен быть идеальный материал для пассивации канала. Проблема в том, что диоксид германия (GeO 2) слабее, чем SiO 2 , и может поглощаться и растворяться водой, используемой для очистки подложек во время изготовления чипов. Что ещё хуже, процесс роста GeO 2 сложно контролировать. Для идеального устройства требуется слой GeO 2 в 1-2 нм толщиной, но в реальности сложнее сделать слой тоньше 20 нм.

Исследователи изучали разные альтернативы. Профессор из Стэнфорда, Кришна Сарасват , и его коллеги, подстегнувшие интерес к использованию германия в качестве альтернативного материала ещё в 2000-х, сначала изучали диоксид циркония, материал с высокой диэлектрической проницаемостью того типа, что используется сегодня в высокоскоростных транзисторах. На основе их работы группа из Imec в Бельгии изучили, что можно сделать со сверхтонким слоем кремния для улучшения интерфейса между германием и подобными материалами.

Но пассивация германия была серьёзно усовершенствована в 2011 году, когда команда профессора Шиничи Такаги из Токийского университета продемонстрировала способ контроля роста германиевого изолятора. Сначала исследователи вырастили нанометровый слой ещё одного изолятора, оксида алюминия, на германиевом канале. После этого их разместили в кислородной камере. Часть кислорода прошла через слой оксида алюминия к находящемуся внизу германию, и смешалась с ним, сформировав тонкий слой оксида (соединение германия с кислородом, но технически не GeO 2). Оксид алюминия не только помогает контролировать рост, но и служит защитным покрытием для менее стабильного слоя.


Нанопроводные каналы

Несколько лет назад, вдохновившись этим открытием и учитывая сложности создания pFET с каналами из A III B V , моя группа в Пердью начала исследовать способы создания транзисторов на германиевых каналах. Мы начали с использования подложек с германием на изоляторе, разработанных французским производителем Soitec. Это стандартные кремниевые подложки с изолирующим слоем, находящимся под 100 нм слоем германия.

С этими подложками можно создавать транзисторы, у которых все стандартные части – исток, канал и сток – сделаны из германия. Производителю транзисторов не обязательно следовать такой конструкции, но нам так было проще изучать основные свойства германиевых устройств.

Одним из первых препятствий стала борьба с сопротивлением между истоком и стоком транзистора и металлическими электродами, соединяющими их с внешним миром. Сопротивление возникает из-за естественного электронного барьера Шоттки, появляющегося в месте контакта металла и полупроводника. Кремниевые транзисторы без устали оптимизировали для минимизации этого барьера, так, чтобы переносчикам заряда было легко его преодолевать. Но в германиевом устройстве требуются хитрые инженерные решения. Благодаря нюансам электронной структуры дырки легко перемещаются из металла в германий, а вот электроны – не очень. Это значит, что у nFET, полагающихся на передвижения электронов, будет очень большое сопротивление, потери тепла и тока.

Стандартный способ сделать барьер тоньше – добавить больше легирующей примеси к истоку и стоку. Физика процесса сложна, но представить её можно так: больше атомов примеси привносят больше свободных зарядов. При изобилии свободных переносчиков заряда электрическое взаимодействие между металлическими электродами и полупроводниковыми истоком и стоком усиливается. Это и помогает усиливать туннельный эффект.

К сожалению, с германием такая технология работает хуже, чем с кремнием. Материал не выдерживает больших концентраций легирующих примесей. Но мы можем использовать те места, где плотность примесей максимальна.

Для этого воспользуемся тем, что в современные полупроводники примеси добавляются сверхвысокими электрическими полями, заталкивающими ионы в материал. Некоторые из этих атомов сразу останавливаются, иные же проникают глубже. В результате вы получите нормальное распределение: концентрация атомов примесей на некоторой глубине будет максимальной, а затем при перемещении вглубь или в обратном направлении будет уменьшаться. Если мы заглубим электроды истока и стока в полупроводник, мы можем поместить их в места наивысшей концентрации атомов примеси. Это кардинально уменьшает проблему сопротивления контактов.


Контакты погружаются на глубину максимальной концентрации атомов примесей

Вне зависимости от того, будут ли производители чипов использовать такой подход для уменьшения барьера Шоттки в германии, это полезная демонстрация его возможностей. В начале нашего исследования лучшее, что показывали германиевые nFET, это токи в 100 мкА на каждый мкм ширины. В 2014 году на симпозиуме VLSI Technology and Circuits на Гавайях мы сообщили о германиевых nFET, способных пропускать уже в 10 раз больше тока, что примерно сравнимо с кремнием. Через шесть месяцев мы продемонстрировали первые контуры, содержащие германиевые nFET и pFET, необходимое предварительное условие для изготовления современных логических микросхем.

С тех пор мы использовали германий для постройки более продвинутых транзисторов, таких, как FinFET – современный уровень техники. Мы даже делали нанопроводные транзисторы на германии, которые в ближайшие годы могут заменить FinFET.

Эти разработки потребуются для того, чтобы германий стали использовать в массовом производстве, поскольку с их помощью можно лучше контролировать канал транзистора. Благодаря небольшой запрещённой зоне германия, такой транзистор требует всего четверти энергии, необходимой для переключения в проводящее состояние кремниевого транзистора. Это открывает возможности для низкоэнергетической работы, но это же делает более вероятной и утечку тока в то время, когда он этого делать не должен. Устройство с лучшим контролем над каналом позволит изготовителям использовать малую запрещённую зону без компромиссов с быстродействием.

Мы взяли хороший старт, но у нас ещё есть работа. Например, необходимы дополнительные эксперименты с подложками, которые должны показать транзисторы с высококачественными германиевыми каналами. Также необходимо внести улучшения в дизайн для ускорения.

Конечно, германий – не единственный вариант для транзисторов будущего. Исследователи продолжают изучать составы A III B V , которые можно использовать как вместе с германием, так и обособленно. Количество возможных улучшений транзисторов огромно. В этот список входят транзисторы на углеродных нанотрубках , вертикально ориентированные переключатели, трёхмерные контуры, каналы из смеси германия и олова, транзисторы, основанные на принципе квантового туннелирования.

В ближайшие годы, возможно, мы адаптируем какие-то из перечисленных технологий. Но добавление германия – даже в смеси с кремнием – это решение, которое позволит производителям продолжать улучшение транзисторов уже в ближайшем будущем. Германий, изначальный материал эры полупроводников, может стать панацеей её следующего десятилетия.

Теги:

  • транзисторы
  • германий
Добавить метки

Транзистор (transistor) – полупроводниковый элемент с тремя выводами (обычно), на один из которых (коллектор ) подаётся сильный ток, а на другой (база ) подаётся слабый (управляющий ток ). При определённой силе управляющего тока,как бы «открывается клапан» и ток с коллектора начинает течь на третий вывод (эмиттер ).


То есть транзистор – это своеобразный клапан , который при определённой силе тока, резко уменьшает сопротивление и пускает ток дальше (с коллектора на эмиттер).Происходит это потому, что при определенных условиях, дырки имеющие электрон, теряют его принимая новый и так по кругу. Если к базе не прилагать электрический ток, то транзистор будет находиться в уравновешенном состоянии и не пропускать ток на эмиттер.

В современных электронных чипах, количество транзисторов исчисляется миллиардами . Используются они преимущественно для вычислений и состоят из сложных связей.

Полупроводниковые материалы, преимущественно применяемые в транзисторах это: кремний , арсенид галлия и германий . Также существуют транзисторы на углеродных нанотрубках , прозрачные для дисплеев LCD и полимерные (наиболее перспективные).

Разновидности транзисторов:

Биполярные – транзисторы в которых носителями зарядов могут быть как электроны, так и «дырки». Ток может течь, как в сторону эмиттера , так и в сторону коллектора . Для управления потоком применяются определённые токи управления.

– распротранёные устройства в которых управление электрическим потоком происходит посредством электрического поля. То есть когда образуется большее поле – больше электронов захватываются им и не могут передать заряды дальше. То есть это своеобразный вентиль, который может менять количество передаваемого заряда (если полевой транзисторс управляемым p — n переходом). Отличительной особенностью данных транзисторов являются высокое входное напряжение и высокий коэффи­циент усиления по напряжению.

Комбинированные – транзисторы с совмещёнными резисторами, либо другими транзисторами в одном корпусе. Служат для различных целей, но в основном для повышения коэффициента усиления по току.

Подтипы:

Био-транзисторы – основаны на биологических полимерах, которые можно использовать в медицине, биотехнике без вреда для живых организмов. Проводились исследования на основе металлопротеинов, хлорофилла А (полученного из шпината), вируса табачной мозаики.

Одноэлектронные транзисторы – впервые были созданы российскими учёными в 1996 году . Могли работать при комнатной температуре в отличии от предшественников. Принцип работы схож с полевым транзистором, но более тонкий. Передатчиком сигнала является один или несколько электронов. Данный транзистор также называют нано- и квантовый транзистор. С помощью данной технологии, в будущем рассчитывают создавать транзисторы с размером меньше 10 нм , на основе графена .

Для чего используются транзисторы?

Используются транзисторы в усилительных схемах , лампах , электродвигателях и других приборах где необходимо быстрое изменение силы тока или положение вкл выкл . Транзистор умеет ограничивать силу тока либо плавно , либо методом импульс пауза . Второй чаще используется для -управления. Используя мощный источник питания, он проводит его через себя, регулируя слабым током.

Если силы тока недостаточно для включения цепи транзистора, то используются несколько транзисторов с большей чувствительностью, соединённые каскадным способом.

Мощные транзисторы соединённые в один или несколько корпусов, используются в полностью цифровых усилителях на основе . Часто им требуется дополнительное охлаждение . В большинстве схем, они работают в режиме ключа (в режиме переключателя).

Применяются транзисторы также в системах питания , как цифровых, так и аналоговых (материнские платы , видеокарты , блоки питания & etc ).

Центральные процессоры , тоже состоят из миллионов и миллиардов транзисторов, соединённых в определённом порядке для специализированных вычислений .

Каждая группа транзисторов, определённым образом кодирует сигнал и передаёт его дальше на обработку. Все виды и ПЗУ памяти, тоже состоят из транзисторов.

Все достижения микроэлектроники были бы практически невозможны без изобретения и использования транзисторов. Трудно представить хоть один электронный прибор без хотя бы одного транзистора.

В конце позапрошлого века немецкий химик К.А. Винклер открыл элемент, существование которого заранее было предсказано Д.И. Менделеевым. А 1 июля 1948 г. в подвале газеты «Нью-Йорк Таймс» появилась короткая заметка под заголовком «Создание транзистора». В ней сообщалось об изобретении «электронного прибора, способного заменить в радиотехнике обычные электровакуумные лампы».

Разумеется, первые транзисторы были германиевыми, и именно этот элемент произвел настоящий переворот в радиотехнике. Не будем спорить, выиграли ли ценители музыки при переходе от ламп к транзисторам - дискуссии эти уже успели порядком поднадоесть. Давайте лучше зададим себе другой, не менее актуальный вопрос: пошел ли на пользу звуку следующий виток эволюции, когда кремниевые приборы пришли на смену германиевым? Век последних был недолог, и они не оставили после себя, подобно лампам, ощутимого звукового наследия. Сейчас германиевые транзисторы не выпускаются ни в одной стране, и о них уже вспоминают крайне редко. А зря. Я считаю, что любой кремниевый транзистор, будь он биполярный или полевой, высокочастотный или низкочастотный, малосигнальный или мощный, менее пригоден для высококачественного звуковоспроизведения, чем германиевый. Для начала давайте рассмотрим физические свойства обоих элементов.*

* Публикуется по H.J.Fisher, Transistortechnik fur Den Funkamateur. Перевод А.В. Безрукова, М., МРБ, 1966.

Свойства Германий Кремний
Плотность, г/см 3 5,323 2,330
Атомный вес 72,60 28,08
Количество атомов в 1 см 3 4,42*10 22 4,96*10 22
Ширина запрещенной зоны, ЭВ 0,72 1,1
Диэлектрическая постоянная 16 12
Температура плавления, °С 937,2 1420
Теплопроводность, кал/см X сек X град 0,14 0,20
Подвижность электронов, см 2 /сек*В 3800 1300
Подвижность дырок, см 2 /сек*В 1800 500
Продолжительность жизни электрона, мксек 100 - 1000 50 - 500
Длина свободного пробега электрона, см 0,3 0,1
Длина свободного пробега дырки, см 0,07 - 0,02 0,02 - 0,06

Из таблицы видно, что подвижность электронов и дырок, продолжительность жизни электронов, а также длина свободного пробега электронов и дырок значительно выше у германия, а ширина запрещенной зоны ниже, чем у кремния. Известно также, что падение напряжения на переходе p-n составляет 0,1 - 0,3 В, а на n-p - 0, 6 - 0,7 В, из чего можно сделать вывод, что германий является гораздо лучшим «проводником», чем кремний, а следовательно, и каскад усиления на транзисторе p-n-p имеет значительно меньшие потери звуковой энергии, чем аналогичный на n-p-n. Возникает вопрос: почему же выпуск германиевых полупроводников был прекращен? Прежде всего потому, что по некоторым критериям Si намного предпочтительнее, поскольку может работать при температуре до 150 град. (Ge - 85), да и частотные свойства у него несравненно лучше. Вторая причина чисто экономическая. Запасы кремния на планете практически безграничны, в то время как германий - довольно редкий элемент, технология получения и очистки которого значительно дороже.

Между тем, для применения в домашней аудиотехнике упомянутые преимущества кремния абсолютно неочевидны, а свойства германия, наоборот, крайне привлекательны. Кроме того, в нашей стране германиевых транзисторов хоть завались, да и цены на них просто смешные.**

** Предвижу, что после выхода этой статьи цены на радиорынках могут подскочить, как это уже произошло с некоторыми типами ламп и микросхем - Прим. ред.

Итак, приступим к рассмотрению схем усилителей на германиевых полупроводниках. Но сначала несколько принципов, соблюдение которых исключительно важно для получения действительно высокого качества звучания.

  1. В схеме усилителя не должно быть ни одного кремниевого полупроводника.
  2. Монтаж производится объемным навесным способом, с максимальным использованием выводов самих деталей. Печатные платы значительно ухудшают звучание.
  3. Количество транзисторов в усилителе должно быть минимально возможным.
  4. Транзисторы следует отбирать попарно не только для верхнего и нижнего плеча выходного каскада, но и для обоих каналов. Стало быть, придется отобрать по 4 экземпляра с возможно близкими значениями h21э (не менее 100) и минимальным Iко.
  5. Сердечник силового трансформатора изготавливается из пластин Ш с сечением не менее 15 см 2 . Очень желательно предусмотреть экранную обмотку, которую следует заземлить.

Схема №1, минималистская

Принцип не нов, такая схемотехника была весьма популярна в шестидесятые годы. На мой взгляд, это чуть ли не единственная конфигурация бестрансформаторного усилителя, соответствующая аудиофильским канонам. Благодаря своей простоте позволяет добиться высокого качества звучания при минимальных затратах. Автором она была лишь адаптирована к современным требованиям High End Audio.

Настройка усилителя весьма проста. Сначала устанавливаем резистором R2 половину напряжения питания на «минусе» конденсатора С7. Затем подбираем R13 так, чтобы миллиамперметр, включенный в коллекторную цепь выходных транзисторов, показал ток покоя 40 - 50 мА, не больше. При подаче сигнала на вход следует убедиться в отсутствии самовозбуждения, хотя оно и маловероятно. Если все же на экране осциллографа заметны признаки ВЧ-генерации, попробуйте увеличить емкость конденсатора С5. Для устойчивой работы усилителя при изменении температуры диоды VD1, 2, должны быть смазаны теплопроводной пастой и прижаты к одному из выходных транзисторов. Последние устанавливаются на теплоотводах площадью не менее 200 см 2 .

Схема №2, усовершенствованная

В первой схеме был квазикомплементарный выходной каскад, поскольку промышленность 40 лет назад не выпускала мощных германиевых транзисторов со структурой n-p-n. Комплементарные пары ГТ703 (p-n-p) и ГТ705 (n-p-n) появились лишь в 70-х, что позволило усовершенствовать схему выходного каскада. Но мир далек от совершенства - у перечисленных выше типов максимальный ток коллектора всего 3,5 А (у П217В Iк max = 7,5 A). Поэтому применить их в схеме можно, лишь поставив по два в плечо. Этим, собственно, и отличается №2, разве что полярность блока питания противоположна. И усилитель напряжения (VT1), соответственно, реализован на транзисторе другой проводимости.

Настраивается схема точно так же, даже ток покоя выходного каскада такой же.

Коротко о блоке питания

Для получения высокого качества звучания придется поискать в закромах 4 германиевых диода Д305. Другие категорически не рекомендуются. Соединяем их мостом, шунтируем слюдой КСО по 0,01 мкФ, а затем ставим 8 конденсаторов 1000 мкФ X 63 В (те же К50-29 или Philips), которые тоже шунтируем слюдой. Наращивать емкость не надо - тональный баланс уходит вниз, теряется воздух.

Параметры обеих схем примерно одинаковы: выходная мощность 20 Вт на нагрузке 4 Ом при искажениях 0,1 - 0,2%. Разумеется, эти цифры мало что говорят о звучании. Уверен в одном - послушав грамотно сделанный по одной из этих схем усилитель, вы вряд ли вернетесь к кремниевым транзисторам.

Апрель 2003 г.

От редакции:

Мы послушали у Жана прототип первого варианта усилителя. Первое впечатление - необычно. Звучание отчасти транзисторное (хороший контроль нагрузки, четкий бас, убедительный драйв), отчасти ламповое (отсутствие жесткости, воздух, деликатность, если хотите). Усилитель заводит, но не раздражает назойливостью. Мощности хватает, чтобы без малейших признаков клиппинга раскачать до невыносимой громкости напольную акустику с чувствительностью 90 дБ. Что интересно - тональный баланс на разных уровнях почти не меняется.

Это результат продуманной конструкции и тщательно подобранных деталей. Учитывая, что комплект транзисторов обойдется рублей в пятьдесят (хотя, если не очень повезет, для подбора пар может потребоваться несколько десятков, смотря какая партия попадется), не экономьте на других элементах, особенно конденсаторах.

Буквально за пару часов на макетной плате был собран один канал усилителя для анализа схемы. На выходе устанавливались американские германиевые транзисторы Altec AU108 с граничной частотой 3 МГц. При этом полоса пропускания по уровню 0,5 дБ была 10 Гц - 27 кГц, искажения на мощности 15 Вт примерно 0,2%. Доминировала 3-я гармоника, но наблюдались выбросы и более высоких порядков, вплоть до 11-го. С транзисторами ГТ-705Д (Fгр. = 10 кГц) ситуация была несколько иной: полоса сузилась до 18 кГц, зато гармоник выше 5-й на экране анализатора вообще не было видно. Изменилось и звучание - оно как-то потеплело, смягчилось, но искрящееся прежде «серебро» поблекло. Так что первый вариант можно рекомендовать для акустики с «мягкими» пищалками, а второй - с титановыми или пьезоизлучателями. Характер искажений зависит от качества конденсаторов С7 и С6 на схемах 1 и 2 соответственно. А вот их шунтирование слюдой и пленкой не очень заметно на слух.

К недостаткам схемы следует отнести малое входное сопротивление (около 2 кОм в верхнем положении регулятора громкости), которое может перегрузить выходной буфер источника сигнала. Второй момент - уровень искажений сильно зависит от характеристик и режима первого транзистора. Чтобы повысить линейность входного каскада, имеет смысл ввести две вольт-добавки для питания коллекторной и эмиттерной цепи T1 . Для этого делаются два дополнительных независимых стабилизатора с выходным напряжением 3 В. «Плюс» одного соединяется с шиной питания - 40 В (все пояснения даются для схемы 1, для другой схемы полярность меняется на противоположную), а «минус» подается на верхний вывод R4. Резистор R7 и конденсатор C6 из схемы исключаются. Второй источник включается так: «минус» на землю, а «плюс» - на нижние выводы резисторов R3 и R6. Конденсатор C4 при этом остается между эмиттером и землей. Возможно, стоит поэкспериментировать со стабилизированным питанием. Любые изменения в питании и самой схеме усилителя радикально влияют на звук, что открывает широкие возможности для твикинга.

Таблица 1. Детали усилителя
Сопротивления
R1 10k переменное, ALPS тип A
R2 68k подстроечное CП4-1
R3 3k9 1/4 w ВС, С1-4
R4 200 1/4 w -//-
R5 2k 1/4 w -//-
R6 100 1/4 w -//-
R7 47 1 w -//-
R8,R9 39 1 w -//-
R10, R11 1 5 w проволочные, С5 - 16МВ
R12 10k 1/4 w ВС, С1-4
R13 20 1/4 w -//- подбирается при настройке
Конденсаторы
С1 47 мкФ х 16 В К50-29, Philips
С2 100 мкФ х 63 В -//-
С3 1000 пФ КСО, СГМ
С4 220 мкФ х 16 В К50-29, Philips
С5 330 пФ
С6 1000 мкФ х 63 В К50-29, Philips
С7 4 х 1000 мкФ х 63 В -//-
Полупроводники
VD1, VD2 Д311
VT1, VT2 ГТ402Г
VT3 ГТ404Г
VT4, VT5 П214В
Таблица 2. Детали усилителя
Сопротивления
R1 10k переменное, ALPS тип A
R2 68k подстроечное, CП4-1
R3 3k9 1/4 w ВС, С1-4
R4 200 1/4 w -//-
R5 2k 1/4 w -//-
R6 100 1/4 w -//-
R7 47 1 w -//-
R8 20 1/4 w -//-, подбирается при настройке
R9 82 1 w -//-
R10 - R13 2 5 w проволочные, С5 - 16МВ
R14 10k 1/4 w ВС, С1-4
Конденсаторы
С1 47 мкФ х 16 В К50-29, Philips
С2 100 мкФ х 63 В -//-
С3 1000 мкФ х 63 В К50-29, Philips
С4 1000 пФ КСО, СГМ
С5 220 мкФ х 16 В К50-29, Philips
С6 4 х 1000 мкФ х 63 В -//-
С7 330 пФ КСО, СГМ, подбирается при настройке
Полупроводники
VD1, VD2 Д311
VT1, VT2 ГТ404Г
VT3 ГТ402Г
VT4, VT6 ГТ705Д
VT5, VT7 ГТ703Д

В настоящее время все более широкое применение в качестве основных ключевых приборов для мощной преобразовательной техники находят приборы на основе карбида кремния - мощные диоды Шоттки и MOSFET транзисторы. Карбид-кремниевая технология привнесла значительные усовершенствования в производство MOSFET, что сделало их конкурентами кремниевым IGBT-транзисторам, особенно в области высоких напряжений.

Рассмотрим 1200-В 4H-SiC MOSFET. В данном транзисторе используется высококачественная подложка, улучшено качество эпитаксиального слоя, оптимизирована конструкция под процесс производства. Также, посредством азотирования, увеличена подвижность носителей. Карбид-кремниевый транзистор превосходит кремниевые транзисторы за счет расширенной запрещенной зоны. Напряженность электрического поля, при которой происходит пробой, увеличилась в 10 раз, улучшилась теплопроводность, а, следовательно, возросли рабочие температуры. При использовании в полупроводниках с максимально допустимым рабочим напряжением 600 В и выше, карбид кремния также превосходит кремний. На сегодня 600-В и 1200-В карбид-кремниевые диоды Шоттки являются наилучшим решением в повы-шающих преобразователях. За счет более низких потерь на переключение по сравнению с кремниевыми PiN-диодами.
Если же речь идет о силовых ключах, то кремниевые MOSFET уступают 600- и 1200-В IGBT-транзисторам прежде всего из-за значительного сопротивления канала в открытом состоянии (RDSON), которое увеличивается пропорционально квадрату максимально допустимого напряжения сток-исток (VDSMAX). Сопротивление RDSON можно рассматривать как совокупность сопротивлений RJFET и RDRIFT (рис. 1).

Рис.1. Эквивалентная схема DMOSFET.

При этом сопротивление RDRIFT, отражающее дрейф свободных носителей, доминирует и его величина определяется следующим соотношением:

RDRIFT = d/qμND, где d — толщина дрейфового слоя; q — заряд электрона; ND — коэффициент легирования.

В новом поколении карбид-кремниевых MOSFET транзисторов толщина дрейфового слоя d уменьшена примерно в 10 раз; во столько же раз увеличен коэффициент N D . В результате сопротивление R DSON уменьшено почти в 100 раз по сравнению с его кремниевым аналогом.

ПРИМЕНЕНИЕ КАРБИД-КРЕМНИЕВЫХ ТРАНЗИСТОРОВ

Применение приборов данного типа рассмотрим на примере 1200-В, 20-А транзистора с RDSON = 100 мОм и 15-В уровнем управления затвором. Помимо уменьшения сопротивления RDSON при нормальных условиях в карбид-кремниевых транзисторах значительно уменьшено влияние температуры. В диапазоне 25…150°С изменение сопротивления составляет всего лишь 20%, что является весьма малым значением по сравнению с аналогичным значением составляющим 200% или даже 300% у кремниевых MOSFET. В принципе карбид-Хотя максимально допустимую температуру серийных транзисторов (в основном размещаемых в пластмассовых корпусах ТО-247) ограничивают до 150°С, карбид-кремниевые транзисторы могут работать и при температуре свыше 200°С.
По сравнению с кремниевыми IGBT-транзисторами, карбид-кремниевые MOSFET имеют и существенно меньшие потери на коммутацию. MOSFET — униполярные приборы, поэтому не имеют «хвостов» при коммутации, обусловленных рассасыванием неосновных носителей. В таблице 1 отображены значения потерь на переключение обоих типов транзисторов.

Параметр

IGBT, 1200-B Infineon BSM 15 GD 120
DN2 ID (max) = 15 A при 80°С

DMOSFET 1200-B CREE engineering
sample ID (max) = 15 A при 150 °С

Напряжение VDS, В

Индуктивная

Индуктивная (500 мкГн)

Напряжение управления VGE, В

Сопротивление затвора RG, Ом

Потери энергии при включении (коммутируемый ток 10 А), ЕON, мДж

Потери энергии при выключении (коммутируемый ток 10 А), ЕOFF, мДж

Максимальный кпд, ή

Евро-кпд* ήEUR0

Таблица 1. Потери на переключение кремниевых IGBT и карбид-кремниевых MOSFET.

Далее рассмотрим пример применения карбид-кремниевых MOSFET в трехфазных 7-кВт, 16,6-кГц инверторах солнечных батарей. Инвертор имеет топологию В6, разработанную в институте ISE, и использует конденсатор в цепи постоянного тока, соединяющийся с нейтральным проводом. На рисунке 2 показаны результаты сравнительных испытаний. Как видно из приведенных результатов, при использовании карбид-кремниевых транзисторов потери сокращаются почти в 2 раза. Значит уменьшается и температура теплоотвода: 93°С при использовании IGBT-транзисторов и 50°С — при использовании карбид-кремниевых MOSFET.

Рис.2. Сравнение потерь в 1200-В MOSFET и IGBT

Преимущества использования карбид-кремниевых MOSFET в фотоэлектрических преобразователях:
- низкая стоимость индуктивных компонентов. Размеры индуктивных компонентов зависят от частоты преобразования. Их стоимость уменьшается примерно на 50% при увеличении частоты преобразования в 2—3 раза. С увеличением частоты преобразования увеличивается и частота третьей гармоники, а уменьшить мощность третьей гармоники частотой 150 кГц гораздо проще, чем частотой 50 кГц;
- более низкие требования к теплоотводу. Использование карбид-кремниевых MOSFET позволяет уменьшить их температуру на 50%, что приведет к уменьшению размеров и, соответственно, стоимости всего изделия приблизительно на 5% в нашем примере;
- увеличение прибыли за счет сокращения потерь энергии.

На рисунке 3 показана стандартная схема трехфазного выпрямителя с изолированным DC/DC-преобразователем с коммутацией при нулевом токе. В качестве ключей S1, S2 в испытаниях были использованы 1200-В, 25-А IGBT-транзисторы, 1200-В, 40-А IGBT-транзисторы и 1200-В, 25-А карбид-кремниевые MOSFET. Результаты работы системы на максимальную нагрузку 3 кВт приведены на рисунке 4. Как видно, при работе с MOSFET КПД системы увеличивается на 2,2%. Корпус MOSFET имеет меньшую температуру: на 25°С ниже, чем 40-А IGBT и на 36°С ниже чем у 25-А IGBT.


Рис. 3. Трехфазный 3-кВт инвертор с большей величиной коэффициента мощности и с прямоходовым преобразователем Рис. 4. График изменения КПД в зависимости от выходной мощности при частоте преобразования 67 кГц.

Выше были показаны достоинства 1200-В MOSFET. Однако и при более высоких напряжениях — 6,5 кВ и даже выше карбид-кремниевые транзисторы также имеют преимущества перед их кремниевыми аналогами. Недавно был разработан 10-кВ, 10-А карбид-кремниевый MOSFET. При напряжении управления затвором 20 В и токе через канал 10 А падение напряжении на открытом канале составляет всего лишь 4,1 В, что эквивалентно сопротивлению 127 мОм/см2. Утечка тока сток-исток составляет 124 нА при напряжении 10 кВ.
В ходе проведения сравнительного эксперимента было установлено, что, при работе на индуктивную нагрузку, потери на переключение в карбид-кремниевом транзисторе в 200 раз меньше, чем в 6,5-кВ IGBT! Задержка включения составляет всего лишь 94 нс, а задержка на выключение — 50 нс; у IGBT — 1,4 мкс и 540 нс соответственно!
При использовании 10-кВ карбид-кремниевых MOSFET и диода Шоттки в повышающем преобразователе (входное напряжение — 500 В, выходное — 5 кВ) КПД 600-Вт преобразователя составил 91%. По итогам произведенных расчетов установлено, что та же схема с обычным кремниевым MOSFET могла бы работать лишь с частотой всего несколько сотен Гц. На рисунке 5 показаны графики токов и напряжений при выключении MOSFET. Из рисунка видно, насколько быстро протекают переходные процессы в приборе.

Рис. 5. Процесс коммутации 10-кВ карбид-кремниевого MOSFET при частоте 20 кГц и мощности преобразователя 600 Вт.

При возросшем интересе к альтернативным источникам энергии карбид-кремниевая технология имеет широкие перспективы. За счет снижения потерь мощности применение карбид-кремниевых транзисторов является привлекательным в фотоэлектрических преобразователях, а также в преобразователях генераторов энергии из органического топлива в будущем.

Подборка справочных данных на отечественные биполярные транзисторы малой, средней и большой мощности. В основном производства советского союза



Полупроводниковые приборы малой мощности имеют допустимую мощность рассеяния в коллекторном переходе до 0,3 Вт . (Под мощностью в данной классификации подразумевается мощность, выделяемая на коллекторном переходе полупроводника) Отвод тепла от коллекторного перехода к корпусу у них происходит вдоль тонкой пластины базы, имеющей малую теплопроводность. Рассчитываются для работы без специальных теплоотводящих устройств (радиаторов).Все внешние выводы расположены по диаметру донышка и в обычно средний вывод является базовым, а эмиттерный расположен чкть ближе к базовому, чем коллекторный.

К этим полупроводникам относят приборы с рассеиваемой мощностью в интервале от 0,3 до 1,5 Вт

Для транзисторов большой мощности рассеиваемая мощность превышает 1,5 Вт.

Типы корпусов зарубежных и отечественных транзисторов

Корпус - это основная и самая габаритная часть конструкции абсолютно любого транзистора, выполняющая защитную функцию от внешних воздействий и используемая также для соединения с внешними схемами с помощью металлических выводов. Типы корпусов зарубежных транзисторов стандартизованы для простоты процесса изготовления и применения изделий в радиолюбительской практике. Число типовых транзисторов в настоящее время исчисляется сотнями.


Каждый полупроводниковый прибор, в том числе и транзистор, имеет свое уникальное обозначение, по которой можно его идентифицировать из кучи других радиокомпонентов и деталей.

Основным элементом двухпереходного биполярного транзистора является монокристалл полупроводника типа п или р, в котором с помощью примесей созданы три области с электронной и дырочной электропроводимостью, разделенные двумя p-n переходами (смотри рисунок в верхней части страницы). Если средняя область имеет электронную проводимость типа п, а две крайние дырочную типа р, то такой транзистор имеет структуру р-п-р в отличие от транзисторов п-р-п, имеющих среднюю область с дырочной, а крайние области с электронной проводимостями.

Средняя область 1 кристалла полупроводника с n-проводимостью называется базой. Одна крайняя область 2 с р-проводимостью, инжектирующая (эмиттирующая) неосновные носители заряда, называется эмиттером, а другая 3, осуществляющая экстракцию (выведение) носителей заряда из базы, - коллектором. База отделена от эмиттера и коллектора эмиттерным 4 и коллекторным 5 р-п-переходами. От базы 1, эмиттера 2 и коллектора 3 сделаны металлические выводы (Б, Э, К), которые проходят через изоляторы в дне корпуса.

Транзисторы изготовляют в герметичных металлостеклянных, металлокерамических или пластмассовых корпусах, а также без корпусов. Бескорпусные транзисторы защищены от влияния внешней среды слоем лака, смолы, легкоплавкого стекла и герметизируются совместно с устройством, в котором они предварительно монтируются. настоящее время большинство транзисторов, в том числе транзисторы интегральных схем, выполняют на основе кремния с плоскостным типом перехода. Применение точечных переходов из-за нестабильности работы ограничено. Базовая область транзисторов выполняется с очень малой толщиной (от 1 до 25 мкм). Различна степень легирования областей. Концентрация примесей в эмиттере на несколько порядков выше, чем в базе. Степень легирования базы и коллектора зависит от типа транзистора.

В рабочем режиме к электродам транзисторов подключают постоянные напряжения внешних источников энергии. Помимо постоянных напряжений, к электродам подводят сигналы, подлежащие преобразованию. В связи с этим различают входную цепь, в которую подводят сигнал, и выходную, в которой с нагрузки снимают сигнал. В зависимости от того, какой из электродов при включении транзистора является общим для входной и выходной цепей, различают схемы с общей базой ОБ, общим эмиттером ОЭ и общим коллектором ОК. В схеме с ОБ входной цепью является цепь эмиттера, а выходной - цепь коллектора. В схеме с ОЭ входной является цепь базы, а выходной- цепь коллектора. В схеме с ОК входной является цепь базы, а выходной - цепь эмиттера.


Физические процессы, протекающие в транзисторах со структурой р-п-р и п-р-п, одинаковы. В транзисторах п-р-п в отличие от транзисторов р-п-р подается напряжение обратной полярности и токи имеют противоположное направление.

В зависимости от полярности напряжений, приложенных к эмиттерному и коллекторному переходам, различают активный, отсечки, насыщения и инверсный режимы включения транзистора.

Активный режим используется при усилении слабых сигналов. В этом режиме на эмиттерный переход подается прямое, а на коллекторный- обратное напряжение. В активном режиме эмиттер инжектирует в область базы неосновные для нее носители, а коллектор производит экстракцию (выведение) неосновных носителей из базовой области.

В режиме отсечки к обоим переходам подводятся обратные напряжения, при которых ток через транзистор ничтожно мал. В режиме насыщения оба перехода транзистора находятся под прямым напряжением; в обоих переходах происходит инжекция носителей; транзистор превращается в двойной диод; ток в выходной цепи максимален при выбранном значении нагрузки и не управляется током входной цепи; транзистор полностью открыт.

В режимах отсечки и насыщения обычно используется транзистор в схемах электронных переключателей. В инверсном режиме меняют функции эмиттера и коллектора, подключив к коллекторному переходу прямое, а к эмиттерному--обратное напряжение. Однако из-за несимметрии структуры и различия концентрации носителей в областях коллектора и эмиттера инверсное включение транзистора неравноценно его нормальному включению в активном режиме.

В продолжение темы:
Смартфон

Добрый день дорогие посетители блога сайт. Наверное каждый из Вас задавался вопросом, что делать после установки Windows? Что нужно настроить, установить первым делом. Так...

Новые статьи
/
Популярные