Что такое выпрямитель. Выпрямители тока. Принцип работы и схемы выпрямления электрического тока

При выработке электроэнергии получают переменный ток. Передача и потребление энергии тоже, в основном, осуществляются на переменном токе. Но есть приборы, аппараты и системы, работающие на постоянном токе. Возникает потребность преобразовывать переменный сигнал в постоянный. Для этого служат выпрямители.

Что такое выпрямитель

Выпрямители переменного тока – это схемы с использованием полупроводниковых элементов для преобразования питания переменного тока в однонаправленное питание постоянного тока. Этот преобразовательный процесс называется еще выпрямлением.

Область применения выпрямителей:

  • контактная сеть электрифицированного транспорта;
  • электроприводы, работающие на постоянном токе;
  • компьютерные блоки питания;
  • зарядные устройства для электронных приборов и т. д.

Обычно в качестве выпрямляющего элемента применяется диод. Вторая используемая деталь – тиристор. Выбор выпрямителя зависит от требований нагрузки. При этом учитываются характеристики компонентов схемы выпрямителя тока: напряжение пробоя, номинальный ток, мгновенный ток, диапазоны температур, требования к монтажу и т. д.

Выпрямляющие устройства классифицируются по разным признакам.

По числу фаз:

  • однофазные;
  • трехфазные.

По управляемости:

  • неуправляемые на диодах;
  • управляемые на тиристорах (если требуется как выпрямление переменного тока, так и контроль напряжения);
  • частично управляемые с использованием в схеме диодов и тиристоров.

По значению мощности:

  • силовые;
  • выпрямители сигналов в устройствах малой мощности.

Принцип действия

Простейшая схема выпрямителя состоит из диода, подключаемого между источником питания и нагрузкой. Работа схемы основана на свойстве диода проводить ток в одном направлении и не пропускать его в обратном. На выходе получается напряжение, складывающееся только из положительных полуволн, и, соответственно, выпрямленный ток. Если диод подключить в обратном направлении, сигнал сложится из отрицательных полуволн.

Полуволновое выпрямление

После выпрямления ток протекает в одном направлении, чередуя положительную полуволну с нулевыми значениями напряжения. Количественный показатель этого меняющегося напряжения будет равен эквивалентному постоянному напряжению 0,318 U, где U – максимальное значение входного синусоидального сигнала.

Недостатки схемы:

  1. Так как напряжение на нагрузке присутствует только в положительную половину цикла (50% входного сигнала), это приводит к низкому среднему значению постоянного тока, подаваемому на нагрузку;

Важно! Иногда эта особенность применяется в схемах ограничения мощности резистивной нагрузки, например, при двухуровневом регулировании освещения.

  1. Изменение выпрямляемого выходного сигнала создает форму волны, имеющую большое количество пульсаций, что является нежелательным.

Иногда для разглаживания пульсаций применяют конденсатор. Но существуют ограничения по стоимости и размерам используемых конденсаторов. На практике полуволновое выпрямление применяется редко и только для питания схем небольшой мощности.

Полноволновое выпрямление

Почти все схемы требуют устойчивого и плавного напряжения постоянного тока. Один из способов этого добиться – использовать каждый полупериод входного напряжения.

Полноволновые выпрямители имеют фундаментальные преимущества перед их полуволновыми аналогами:

  • среднее выходное напряжение выше, чем для полуволнового сигнала;
  • выход полноволнового выпрямителя имеет гораздо меньшую пульсацию.

В схеме используется два диода, по одному на каждую половину цикла. Другим главным компонентом является трансформатор, вторичная обмотка которого разделена на две половины с общим центральным соединением. Такая конфигурация приводит к тому, что каждый диод проводит ток в свою полуволну, когда его анодный вывод положителен относительно центральной точки трансформатора, и на нагрузке создается выход в течение обоих полупериодов.

В результате протекающий через нагрузку ток проходит в одном направлении для обоих полупериодов, а выходное напряжение представляет суммарную частоту двух сигналов. Этот тип схемы известен, как двухфазная.

Среднее выходное напряжение через резистор нагрузки теперь вдвое больше и равно 0,637 U, где U – максимальное входное напряжение, или 0,9 U от среднеквадратичного значения.

Важно! Для получения другого выходного напряжения можно использовать различные коэффициенты трансформации.

Главный недостаток схемы – необходимость применения большого трансформатора для заданной выходной мощности с двумя отдельными, но идентичными вторичными обмотками, что делает ее дорогостоящей по сравнению с полноволновым мостом.

Мостовая схема

Этот тип однофазного выпрямителя использует четыре отдельных диода, соединенных в конфигурацию «мост» с замкнутым контуром, для получения желаемого выхода.

Основное достоинство мостовой схемы – не требуется специальный главный запорный трансформатор. Одинарная вторичная обмотка подключается к одной стороне диодного моста, а нагрузка – к другой.

Особенности работы диодного моста:

  1. В продолжение положительного полуцикла одна пара диодов в противоположных плечах моста открыта, другая – заперта. Токовый сигнал проходит по нагрузке однонаправленно;
  2. Когда наступает отрицательный полуцикл, другая пара диодов открывается, а первая – запирается. На выходе ток идет в аналогичном направлении;
  3. Напряжение выхода постоянное и составляет 0,637 от максимального амплитудного значения;

Важно! В действительности на самих диодах также происходит некоторое падение напряжения (2 х 0,7 = 1,4В для кремния). Но этот недостаток имеет значение только в схемах малых напряжений.

  1. Частота пульсаций выпрямленного сигнала в два раза превышает частоту питания. Для 50 Гц на выходе получается 100 Гц.

При практической реализации данных схем можно использовать четыре отдельных диода, но также в продаже доступны готовые мостовые выпрямительные компоненты в разных значениях напряжения и тока. Скошенный уголок указывает, что ближайший выходной контакт является положительным (+), противоположный от него – отрицательный (-), а два других вывода предназначены для входного переменного напряжения от вторичной обмотки трансформатора.

Сглаживающий конденсатор

Можно улучшить среднее выходное напряжение постоянного тока выпрямителя, одновременно добавив плавности сигналу, с помощью сглаживающих конденсаторов, которые соединяются параллельно с нагрузкой.

Конденсатор заряжается до пикового напряжения выходного импульса. Но когда напряжение падает до нуля, он не может разряжаться мгновенно из-за постоянной времени RC схемы. Конденсатор разряжается только до некоторого значения, поддерживая напряжение на нагрузке до тех пор, пока он снова не зарядится при следующем пике. Таким образом, изменения напряжения невелики, но можно еще увеличить сглаживание путем увеличения емкости конденсатора.

Обычно для цепей питания постоянного тока применяют конденсатор алюминиевого или электролитического типа емкостью 100 мкФ и более.

При выборе сглаживающего конденсатора учитываются:

  1. Рабочее напряжение элемента, которое должно быть выше выходного значения выпрямителя без нагрузки;
  2. Емкость, определяющая величину пульсации. Если она слишком низкая, то мало будет влиять на выходной сигнал.

Важно! При большой емкости и маленьком токе нагрузки можно получить почти чистый постоянный сигнал.

Максимальное напряжение пульсации при наличии сглаживающего конденсатора зависит от частоты и тока нагрузки и определяется по формуле:

U = I / f x C, где f – частота входного напряжения.

Достоинством мостового выпрямительного устройства является его легкая трансформация в трехфазную версию. Провод каждой фазы присоединяется между двумя диодами. После выпрямления полнофазного токового сигнала импульсы с фазовым сдвигом перекрываются друг с другом, и получается намного более плавный выходной показатель постоянного тока. Это решающее достоинство в мощных выпрямительных электроцепях, в которых физические габариты фильтрующих компонентов будут непомерно большими с такими параметрами, но оборудование требует постоянного токового сигнала с максимально сглаженной пульсацией.

Однофазные управляемые выпрямители

В частично управляемых схемах в плечи моста устанавливаются два диода и два тиристора. В полностью управляемой схеме все диоды заменяются тиристорами. Когда на тиристоры подается ток управления немедленно, как только анод оказывается под напряжением положительной полуволны, он работает аналогично диоду. Если открывающий сигнал задерживается, то тиристор начинает пропускать ток позже. Соответственно, снижается средний показатель напряжения.

Для питания электронных устройств требуется постоянное напряжение различных значений. Наиболее распространенным источником электрической энергии является промышленная сеть переменного напряжения частотой 50 Гц. Для преобразования переменного напряжения в постоянное (однополярное) применяют выпрямительные устройства. Существует однополупериодное и двухполупериодное выпрямление переменного тока.

Рис. 9. Схема однополупериодного выпрямителя.

Схема полупроводникового однополупериодного выпрямителя приведена на рис. 9. В этом выпрямителе полупроводниковый диодVD включен последовательно с нагрузочным резисторомR н и вторичной обмоткой трансформатораT . Первичная обмотка трансформатора питается, как правило, от сети.

Из временных диаграмм (рис. 10) видно, что ток I н в нагрузке имеет импульсный характер. В течение первого полупериода напряженияU АБ , когда потенциал точкиа положителен по отношению к потенциалу точкиб , диод открыт и через нагрузку протекает ток.

Во второй полупериод полярность напряжений на вторичной обмотке трансформатора изменяется на противоположную и потенциал точки а становится отрицательным по отношению к потенциалу точкиб . При такой полярности диод включен в обратном направлении и ток в нагрузке будет равен нулю.

Рис. 10. Временные диаграммы однополупериодного выпрямителя.

Широкое применение нашли двухполупериодные выпрямители, в которых, в отличие от однополупериодных выпрямителей, используются оба полупериода напряжения сети. Из них наибольшее распространение получил мостовой двухполупериодньгй выпрямитель (рис. 11), состоящий из трансформатора, четырех полупроводниковых диодов VD 1 VD 4 (включенных по мостовой схеме) и нагрузочного резистора.

Рис. 11. Схема двухполупериодного выпрямителя.

В один из полупериодов напряжения сети, когда точка а имеет положительный по отношению к точкеб потенциал, диодыVD2 иVD 3 открыты, а диодыVD 1 иVD4 закрыты. Ток в этот полупериод имеет направление: зажима вторичной обмотки трансформатора, диодVD2 , нагрузочный резисторR н , диодVD3 и зажимб . В следующий полупериод, когда потенциал точкиа становится отрицательным по отношению к точкеб , открыты диодыVD1 иVD4, а диодыVD2 иVD3 закрыты. Протекающий в схеме ток имеет следующее направление: точкаб , диодVD4 , нагрузочный резисторR н , диодVD1 и точкаа вторичной обмотки трансформатора. Таким образом, в течение всего периода ток в нагрузочном резистореR н имеет одно и то же направление. На рис. 12 представлены временные диаграммы токов и напряжений мостового двухполупериодного выпрямителя.

Рис. 12. Временные диаграммы двухполупериодного выпрямителя.

Мостовой выпрямитель по сравнению с однополупериодным имеет ряд преимуществ. В частности, при одном и том же напряжении вторичной обмотки трансформатора и сопротивлении нагрузки R н средний выпрямленный ток / н ср и напряжениеU н ср в мостовом выпрямителе почти в два раза больше, чем в однополупериодном.

Недостатком мостовой схемы выпрямителя является необходимость применения четырех диодов.

Для того, чтобы избежать пульсирующего характера напряжения U н и токаI н нагрузки, в выпрямительных устройствах применяются различныесглаживающие фильтры . Простейшим из них является ёмкостной фильтр. Для этого параллельно сопротивлению нагрузки подключается конденсатор.

Рис. 13. Схема однополупериодного выпрямителя со сглаживающим фильтром.

На рис. 13 приведена схема однополупериодного выпрямителя с ёмкостным сглаживающим фильтром, а на рис.14 – диаграммы, иллюстрирующие его работу.

По мере роста напряжения на зажимах вторичной обмотки трансформатора U АБ конденсаторC заряжается и напряжение на нём повышается. Во время положительного полупериода диодVD пропускает ток, который заряжает конденсатор (практически до амплитудного значения переменного напряжения) и одновременно питает сопротивление нагрузки. Затем напряжениеU АБ уменьшается и, когда оно становится меньше, чем напряжение на конденсаторе, диодVD запирается, а конденсатор начинает разряжаться на резисторR н . Скорость разряда конденсатора определяется постоянной времени разр =R н С . В дальнейшем описанный процесс периодически повторяется.

Рис. 14. Временные диаграммы двухполупериодного выпрямителя со сглаживающим фильтром.

При работе такого выпрямителя существенно уменьшаются пульсации выпрямленного напряжения. Однако следует помнить, что в выпрямителе с ёмкостным сглаживающим фильтром наблюдается значительная зависимость среднего значения выпрямленного напряжения от тока нагрузки.

Основными характеристиками выпрямителей являются:

Номинальное напряжение постоянного тока – среднее значение выпрямленного напряжения, заданное техническими требованиями. Обычно указывается напряжение до фильтра U0 и напряжение после фильтра (или отдельных его звеньев – U. Определяется значением напряжения, необходимым для питаемых выпрямителем устройств.

Номинальный выпрямленный ток I0 – среднее значение выпрямленного тока, т.е. его постоянная составляющая, заданная техническими требованиями. Определяется результирующим током всех цепей питаемых выпрямителем.

Напряжение сети Uсети – напряжение сети переменного тока, питающей выпрямитель. Стандартное значение этого напряжения для бытовой сети –220 вольт с допускаемыми отклонениями не более 10 %.

Пульсация – переменная составляющая напряжения или тока на выходе выпрямителя. Это качественный показатель выпрямителя.

Частота пульсаций – частота наиболее резко выраженной гармонической составляющей напряжения или тока на выходе выпрямителя. Для самой простой однополупериодной схемы выпрямителя частота пульсаций равна частоте питающей сети. Двухполупериодные, мостовые схемы дают пульсации, частота которых равна удвоенной частоте питающей сети. Многофазные схемы выпрямления имеют частоту пульсаций, зависящую от схемы выпрямителя и числа фаз.

Коэффициент пульсаций – отношение амплитуды наиболее резко выраженной гармонической составляющей напряжения или тока на выходе выпрямителя к среднему значению напряжения или тока. Различаюткоэффициент пульсаций на входе фильтра (p0 %) икоэффициент пульсаций на выходе фильтра (p %). Допускаемые значения коэффициента пульсаций на выходе фильтра определяются характером нагрузки.

Коэффициент фильтрации (коэффициент сглаживания) – отношение коэффициента пульсаций на входе фильтра к коэффициенту пульсаций на выходе фильтра k с = p0 / p. Для многозвенных фильтров коэффициент фильтрации равен произведению коэффициентов фильтрации отдельных звеньев.

Колебания (нестабильность) напряжения на выходе выпрямителя –изменение напряжения постоянного тока относительно номинального. При отсутствии стабилизаторов напряжения определяются отклонениями напряжения сети.

Схемы выпрямителей.

Выпрямители, применяемые для однофазной бытовой сети выполняются по 3 основным схемам: однополупериодной, двухполупериодной с нулевой точкой (или просто- двухполупериодной), двухполупериодной мостовой(или просто –мостовой, реже называется как “схема Герца”),. Для многофазных промышленных сетей применяются две разновидности схем: Однополупериодная многофазная и схема Ларионова.

Чаще всего используются трехфазные схемы выпрямителей. Основные показатели, характеризующие схемы выпрямителей могут быть разбиты на 3 группы:

Относящиеся ко всему выпрямителю в целом: U0 -напряжение постоянного тока до фильтра, I0 – среднее значение выпрямленного тока, p0 – коэффициент пульсаций на входе фильтра.

Определяющие выбор выпрямительного элемента (вентиля): Uобр – обратное напряжение (напряжение на выпрямительном элементе (вентиле) в непроводящую часть периода), Iмакс – максимальный ток проходящий через выпрямительный элемент (вентиль) в проводящую часть периода.

Определяющие выбор трансформатора: U2 – действующее значение напряжения на вторичной обмотке трансформатора, I2 – действующее значение тока во вторичной обмотке трансформатора, Pтр – расчетная мощность трансформатора.

В этой статье мы разберем какие бывают выпрямители, для какой цели служат, в чем заключаются особенности того или иного выпрямителя. Если мы решаем собрать какое-либо устройство или просто необходимо запитать готовое, то мы можем использовать питание от гальванических элементов (батареек), либо воспользоваться для этих целей аккумуляторами. Но как быть, если радиоустройство не планируется носить с собой и оно потребляет значительный ток? В таких случаях запитывают устройство от сети 220 вольт.

Напрямую запитать от 220 вольт, разумеется, мы не можем, напряжение слишком высокое и ток переменный, а для питания электронных устройств почти всегда необходим постоянный ток и более низкое напряжение. Необходим так называемый сетевой адаптер .

Фотография трансформатора

Понизить напряжение мы можем с помощью трансформатора, о нем мы поговорим в одной из следующих статей, пока нам достаточно знать, что с помощью трансформатора мы можем понизить или повысить напряжение при переменном токе. Далее нам необходимо сделать из переменного тока постоянный, для этих целей и служит выпрямитель. Существуют три основных типа выпрямителей.

Однополупериодный выпрямитель

Этот выпрямитель работает только в течение положительного полупериода синусоиды. Это можно видеть на следующем графике:

На выходе после диода мы получаем пульсирующее напряжение, нам нужно сделать из него постоянное, то есть из пульсирующего тока получить постоянный. Для этих целей служит электролитический конденсатор большой емкости, подключенный параллельно выходу питания в соответствии с полярностью. На фотографии ниже можно увидеть внешний вид подобного конденсатора:

Такой конденсатор благодаря большой емкости разряжается в течении отрицательного полупериода синусоиды. Обычно для фильтрации напряжения в выпрямителях применяют электролитические конденсаторы от 2200 микрофарад. В усилителях и других устройствах, где важно чтобы напряжение не проседало при увеличении мощности нагрузки, ставят конденсаторы на большую емкость, чем 2200 микрофарад. Для устройств питающих бытовую аппаратуру обычно конденсаторов такой емкости бывает достаточно. На следующем графике (выделено красным), мы можем видеть, как конденсатор поддерживает напряжение стабильным во время прохождения отрицательной полуволны.

Двухполупериодный выпрямитель со средней точкой

Для этой схемы необходим трансформатор, с двумя вторичными обмотками. Напряжение на диодах в два раза выше, чем при включении схемы с однополупериодным выпрямителем или при включении мостовой схемы. В этой схеме попеременно работают оба полупериода. В течении положительного полупериода работает одна часть схемы обозначенная В1 , во время отрицательного полупериода работает вторая часть схемы обозначенная В2 . Эта схема является менее экономичной, чем мостовая схема, в частности у неё более низкий коэффициент использования трансформатора. В этой схеме после диодов получается также пульсирующее напряжение, но частота пульсаций в два раза выше. Что мы и можем видеть на следующем графике:

Двухполупериодный выпрямитель, мостовая схема

И наконец, рассмотрим схему мостового выпрямителя, самую распространенную схему, по которой сделана большая часть всех выпущенных трансформаторных блоков питания. Сейчас объясню принцип работы :

Ток у нас на выходе с трансформатора переменный, а переменный ток, как известно, в течение периода дважды меняет свое направление. Говоря другими словам, конечно же упрощенно, при переменном токе с частотой 50 герц, ток у нас 100 раз в секунду меняет свое направление. То есть сначала он течет от вывода диодного моста под цифрой один , ко второму, потом в течение другой полуволны он течет от вывода под номером два к первому.

Рассмотрим, что происходит с диодным мостом при подаче напряжения, мы видим, на рисунке обозначен красным путь тока, напрямую пройти к выводу диодного моста соединенного с переменным током не позволит диод, который получается у нас включенный в обратном включении, а в обратном включении, как мы помним, диоды не пропускают ток. Току остается только один путь (выделено на рисунке синим), через нагрузку и через диод уйти в провод соединенный с выводом переменного тока. Когда у нас ток меняет свое направление, то вступает в действие вторая часть диодного моста, которая действует аналогично той, что описал выше. В итоге у нас получается на выходе такой же график напряжения, как и у двухполупериодного выпрямителя со средней точкой:

При сборке выпрямителя нужно учитывать полярность на выходе диодного моста, если мы подключим электролитический конденсатор неправильно, то рискуем испортить конденсатор и можно считать, что повезло, если этим все ограничится. Поэтому при сборке диодного моста важно помнить одно правило, плюс на выходе с моста всегда будет в точке соединения 2 катодов диодов, а минус в точке соединения анодов. Встречается и такое обозначение на схемах диодного моста:

Диодный мост можно собрать как из отдельных диодов, так и взять специальную сборку из 4 диодов, уже соединенных по мостовой схеме, и имеющий 4 вывода. В таком случае остается только подать переменный ток, идущий обычно с вторичной обмотки трансформатора на два вывода моста, а с оставшихся двух выводов снимать плюс и минус. Обычно на самой детали бывает обозначено, где какой вывод у моста. Так выглядит импортный диодный мост:

Фото диодный мост кц405

Трехфазные выпрямители

Существуют и трехфазные трансформаторы. Обычным однофазным диодным мостом с такого трансформатора не получится на выходе постоянный ток. Конечно, если нагрузка небольшая можно подключиться к одной фазе и к нулевому проводу трансформатора, но экономичным такое решение не назовешь.

Для трехфазного тока существуют специальные схемы выпрямителей, две таких схемы приведены на рисунках ниже. Первая, известная как схема Миткевича , имеет низкий коэффициент габаритной мощности трансформатора. Эта схема применяется при небольших мощностях нагрузки.

Вторая схема, известная как , нашла широкое применение в электротехнике, так как имеет лучшие технико-экономические показатели по сравнению со схемой Миткевича.

Схема Ларионова может использоваться как "звезда-Ларионов” и "треугольник-Ларионов”. Вид подключения зависит от схемы подключения трансформатора, либо генератора, с выходом которого соединен этот выпрямитель. Автор статьи - AKV .

Обсудить статью ВЫПРЯМИТЕЛИ

  • " onclick="window.open(this.href," win2 return false >Печать
  • E-mail
Подробности Категория: Электротехника

Выпрямители переменного тока

Электростанции вырабатывают переменный ток. Однако 25-30% электрической энергии используется в устройствах, работающих на постоянном токе. Для преобразования переменного тока в постоянный ток применяют выпрямители .
Для выпрямления переменного тока раньше использовались электромагнитные преобразователи, ртутные, ионные, электронные лампы . В настоящее время в основном применяются полупроводниковые выпрямители. Они проще по конструкции, меньше по размерам, надежнее при эксплуатации, удобнее при обслуживании и имеют более высокий КПД.

Полупроводники по электропроводимости занимают промежуточное место между проводниками и изоляторами . Для них характерно наличие двух типов проводимости: электронной , или n -проводимости, за счет свободных электронов; дырочной , или p -проводимости, за счет валентных электронов (дырок). Введение определенных примесей позволяет получать полупроводники проводимости n - или p -типа. Если полупроводник имеет две зоны с различными типами проводимости, то на их границе образуется n - p -переход, обладающий односторонней проводимостью электрического тока.

Действительно, при подключении положительного полюса источника к зоне с проводимостью р -типа, а отрицательного - к зоне с проводимостью n -типа дырки будут отталкиваться положительным потенциалом источника тока, а электроны - отрицательным. В результате этого они движутся навстречу друг другу, частично рекомбинируя в зоне перехода, а затем притягиваются к электродам источника питания, обеспечивая прохождение электрического тока через диод (рис. справа, а ). Если же последний подключить иначе (рис. справа, б ), то зона перехода обедняется носителями зарядов, а его сопротивление резко возрастает и ток через диод не проходит.

Одностороннюю проводимость диода демонстрируют с помощью установки, схематически изображенной на рис. слева.

Такая конструкция диода имеет специфическую зависимость тока от напряжения и имеет вид «клюшки ». Для резистора вольт-амперная характеристика имеет вид прямой линии.

Для наблюдения
осциллограммы вольт-амперной характеристики диода, выражающей зависимость величины проходящего через него тока от приложенного напряжения, собирают установку, изображенную на рис. справа, а . Используя вольт-амперную характеристику диода, можно объяснить его свойство выпрямлять переменный ток, нарисовав графики тока и напряжения (рис. справа, б ). Если включить генератор развертки осциллографа в установке, то можно наблюдать осциллограмму выпрямленного тока.

Для проводника развернутая диаграмма тока имеет вид синусоиды.


С помощью выпрямителей получают пульсирующий ток , направление которого не меняется, а меняется величина. Для того, чтобы сгладить пульсацию тока, последовательно с диодом включают дроссель (катушка с сердечником), а параллельно - конденсаторы большой емкости (рис. слева). Дроссель и конденсаторы представляют собой фильтр , который сглаживает пульсацию тока. На выходе выпрямителя получают постоянный ток по величине и направлению.



Для выпрямления переменного тока используют три вида выпрямителей: однополупериодный (рис. справа, а ), двухполупериодный со средней точкой (рис. справа, б ) и двухполупериодный по мостовой схеме (рис. справа, в ).
Полупроводниковые диоды разнообразны по конструкции и назначению. Для сильных токов применяют плоскостные диоды, а для слабых токов - точечные диоды.

В продолжение темы:
Решения

Сейчас мало юзеров используют DVD-диски для установки ОС на компьютер. Даже компания Microsoft приняла решение продавать новую операционную систему не на «болванках», а на...

Новые статьи
/
Популярные