Фотоэлектрические элементы для солнечной батареи. Фотомануал: солнечная батарея своими руками шаг за шагом. Что надо купить

Эффективное преобразование бесплатных лучей солнца в энергию, которую можно использовать для электроснабжения жилья и иных объектов, – заветная мечта многих апологетов зеленой энергетики.

Но принцип работы солнечной батареи, и ее КПД таковы, что о высокой эффективности таких систем пока говорить не приходится. Было бы неплохо обзавестись собственным дополнительным источником электроэнергии. Не так ли? Тем более что уже сегодня и в России с помощью гелиопанелей “дармовой” электроэнергией успешно снабжается немалое количество частных домохозяйств. Вы все еще не знаете с чего начать?

Ниже мы расскажем вам об устройстве и принципах работы солнечной панели, вы узнаете, от чего зависит эффективность гелиосистемы. А размещенные в статье видеоролики помогут собственноручно собрать солнечную панель из фотоэлементов.

В тематике «солнечной энергетики» достаточно много нюансов и путаницы. Часто новичкам разобраться во всех незнакомых терминах поначалу бывает трудно. Но без этого заниматься гелиоэнергетикой, приобретая себе оборудование для генерации “солнечного” тока, неразумно.

По незнанию можно не только выбрать неподходящую панель, но и попросту сжечь ее при подключении либо извлечь из нее слишком незначительный объем энергии.

Галерея изображений

Максимум отдачи от солнечной панели можно будет получить, только зная, как она работает, из каких компонентов и узлов состоит и как все это правильно подключается

Второй нюанс – это понятие самого термина «солнечная батарея». Обычно под словом «батарея» понимается некое аккумулирующее электроэнергию устройство. Либо на ум приходит банальный отопительный радиатор. Однако в случае с гелиобатареями ситуация кардинально иная. Они ничего в себе не накапливают.

При постоянно растущих ценах на электроэнергию поневоле начнешь задумываться об использовании природных источников для электроснабжения. Одна из таких возможностей — солнечные батареи для дома или дачи. При желании они могут обеспечить полностью все потребности даже большого дома.

Устройство системы электропитания от солнечных батарей

Преобразовывать энергию солнца в электричество – эта идея длительное время не давала спать ученым. С открытием свойств полупроводников это стало возможным. В солнечных батареях используются кремниевые кристаллы. При попадании на них солнечного света в них образуется направленное движение электронов, которое называется электрическим током. При соединении достаточного количества таких кристаллов получаем вполне приличные по величине токи: одна панель площадью чуть больше метра (1,3-1,4 м2 при достаточном уровне освещенности может выдать до 270 Вт (напряжение 24 В).

Так как освещенность меняется в зависимости от погоды, времени суток, напрямую подключать устройства к солнечным батареям не получается. Нужна целая система. Кроме солнечных панелей требуется:

  • Аккумулятор. На протяжении светового дня под воздействием солнечных лучей солнечные батареи вырабатывают электрический ток для дома, дачи. Он не всегда используется в полном объеме, его излишки накапливаются в аккумуляторе. Накопленная энергия расходуется ненастную погоду.
  • Контролер. Не обязательная часть, но желательная (при достаточном количестве средств). Отслеживает уровень заряда аккумулятора, не допуская его чрезмерного разряда или превышения уровня максимального заряда. Оба этих состояния губительны для аккумулятора, так что наличие контролера продлевает срок эксплуатации аккумулятора. Также контролер обеспечивает оптимальный режим работы солнечных панелей.
  • Преобразователь постоянного тока в переменный (инвертор). Не все устройства рассчитаны на постоянный ток. Многие работают от переменного напряжения в 220 вольт. Преобразователь дает возможность получить напряжение 220-230 В.

Солнечные батареи для дома — только часть системы

Установив солнечные батареи для дома или дачи, можно стать совершенно независимым от официального поставщика. Но для этого надо иметь большое количество батарей, некоторое количество аккумуляторов. Комплект, который вырабатывает 1,5 кВт а сутки стоит около 1000$. Этого достаточно для обеспечения потребностей дачи или части электрооборудования в доме. Комплект солнечных батарей для производства 4 кВт в сутки стоит порядка 2200$, на 9 кВт в сутки — 6200$. Так как солнечные батареи для дома — модульная система, можно купить установку, которая будет обеспечивать часть потребностей, постепенно увеличивая ее производительность.

Виды солнечных батарей

С ростом цен на энергоносители идея использования энергии солнца для получения электроэнергии становится все более популярной. Тем более, что с развитием технологий солнечные преобразователи становятся эффективнее и, одновременно, дешевле. Так что, при желании, можно свои нужды обеспечить установив солнечные батареи. Но они бывают разных типов. Давайте разбираться.

Сама солнечная батарея — некоторое количество фотоэлементов, которые расположены в общем корпусе, защищенные прозрачной лицевой панелью. Для бытового использования фотоэлементы производят на основе кремния, так как он относительно недорог, и элементы на его основе имеют неплохой КПД (порядка 20-24%). На основе кремниевых кристаллов изготавливают монокристаллические, поликристаллические и тонкопленочные (гибкие) фотоэлементы. Некоторое количество этих фотоэлементов электрически соединены между собой (последовательно и/или параллельно) и выведены на клеммы, расположенные на корпусе.

Фотоэлементы установлены в закрытом корпусе. Корпус солнечной батареи делают из анодированного алюминия. Он легкий, не подвержен коррозии. Лицевую панель делают из прочного стекла, которое должно выдерживать снего-ветровые нагрузки. К тому же оно должно обладать определенными оптическими свойствами — иметь максимальную прозрачность, чтобы пропускать как можно больше лучей. Вообще, из-за отражения теряется значительное количество энергии, так что требования к качеству стекла высокие и еще оно покрывается антибликовым составом.

Виды фотоэлементов для солнечных батарей

Солнечные батареи для дома делают на основе кремневых элементов трех типов;


Если у вас скатная крыша и фасад развернут на юг или восток, слишком сильно думать о занимаемой площади не имеет смысла. Вполне могут устроить поликристаллические модули. При равном количестве производимой энергии они стоят немного дешевле.

Как правильно выбрать систему солнечных батарей для дома

Есть распространенные заблуждения, которые заставляют вас тратить лишние деньги на приобретение чересчур дорогого оборудования. Ниже приведем рекомендации того, как правильно выстроить систему электропитания от солнечных батарей и не потратить лишних денег.

Что надо купить

Далеко не все компоненты солнечной электростанции жизненно необходимы для работы. Без некоторых частей вполне можно обойтись. Они служат для повышения надежности, но без них система работоспособна. Первое, что стоит запомнить — приобретайте солнечные батареи в конце зимы, начале весны. Во-первых, погода в это время отличная, много солнечных дней, снег отражает солнце, увеличивая общую освещенность. Во-вторых, в это время традиционно объявляют скидки. Далее советы такие:


Если воспользоваться только этими советами, и подключить только технику, которая работает от постоянного напряжения, система солнечных батарей для дома обойдется в гораздо более скромную сумму чем самый дешевый комплект. Но это еще не все. Можно еще часть оборудования оставить «на потом» или вообще обойтись без него.

Без чего можно обойтись

Стоимость комплекта солнечных батарей на 1 кВт в сутки — более тысячи долларов. Немалые вложения. Поневоле задумаешься, а стоит ли оно того и каков же будет срок окупаемости. При нынешних тарифах ждать пока отобьются свои деньги придется не один год. Но можно затраты уменьшить. Не за счет качества, но за счет незначительного снижения комфортности эксплуатации системы и за счет разумного подхода к подбору ее компонентов.


Итак, если бюджет ограничен, можно обойтись несколькими солнечными панелями и аккумуляторными батареями, емкость которых на 20-25% выше максимального заряда солнечных панелей. Для мониторинга состояния купите автомобильные часы, которые еще измеряют напряжение. Это избавит вас от необходимости несколько раз в день измерять заряд на АКБ. Вместо этого вам надо будет время от времени смотреть на показания часов. Для старта это все. В дальнейшем можно докупать солнечные батареи для дома, увеличивать количество АКБ. При желании, можно купить инвертор.

Определяемся с размерами и количеством фотоэлементов

В хороших солнечных батареях на 12 вольт должно быть 36 элементов, на 24 вольта — 72 фотоэлемента. Это количество оптимально. При меньшем числе фотоэлементов вы никогда не получите заявленный ток. И это — лучший из вариантов.

Не стоит покупать сдвоенные солнечные панели — по 72 и 144 элемента соответственно. Во-первых, они очень большие, что неудобно при перевозке. Во-вторых, при аномально низких температурах, которые у нас периодически случаются, они первыми выходят из строя. Дело в том, что ламинирующая пленка при морозах сильно уменьшается в размерах. На больших панелях из-за большого натяжения она отслаивается или даже рвется. Теряется прозрачность, катастрофически падает производительность. Панель идет в ремонт.

Второй фактор. На больших по размерам панелях должна быть больше толщина корпуса и стекла. Ведь увеличивается парусность и снеговые нагрузки. Но далеко не всегда это делают, так как значительно возрастает цена. Если вы видите сдвоенную панель, а цена на нее ниже, чем на две «обычных», лучше ищите что-то другое.

Еще раз: лучший выбор — солнечная панель для дома на 12 вольт, состоящая из 36 фотоэлементов. Это оптимальный вариант, проверенный практикой.

Технические характеристики: на что обратить внимание

В сертифицированных солнечных батареях всегда указывается рабочий ток и напряжение, а также напряжение холостого хода и ток КЗ. При этом стоит учесть, что все параметры обычно указываются для температуры +25°C. В солнечный день на крыше батарея разогревается до температур, значительно превышающих эту цифру. Это объясняет наличие большего рабочего напряжения.

Также обратите внимание на напряжение холостого хода. В нормальных батареях оно порядка 22 В. И все бы ничего, но если проводить работы на оборудовании не отключив солнечные батареи, напряжение холостого ходы выведет из строя инвертор или другую подключенную технику, не рассчитанную на подобный вольтаж. Потому при любых работах — переключении проводов, подключении/отключении аккумуляторов и т.д. и т.п — первое что вы должны сделать — отключить солнечные батареи (снять клеммы). Перебрав схему, их подключаете последними. Такой порядок действий сохранит вам много нервов (и денег).

Корпус и стекло

Солнечные батареи для дома имеют алюминиевый корпус. Этот металл не корродирует, при достаточной прочности имеет небольшую массу. Нормальный корпус должен быть собран из профиля, в котором присутствуют, как минимум, два ребра жесткости. К тому же стекло должно быть вставлено в специальный паз, а не закреплено сверху. Все это — признаки нормального качества.

Еще при выборе солнечной батареи обратите внимание на стекло. В нормальных батареях оно не гладкое, а текстурированное. На ощупь — шершавое, если провести ногтями, слышен шорох. К тому же должно иметь качественное покрытие, которое сводит к минимуму блики. Это означает что в нем не должно ничего отражаться. Если хоть под каким-то углом видны отражения окружающих предметов, лучше найдите другую панель.

Выбор сечения кабеля и тонкости электрического подключения

Подключать солнечные батареи для дома необходимо медным одножильным кабелем. Сечение жилы кабеля зависит от расстояния между модулем и АКБ:

  • расстояние менее 10 метров:
    • 1,5 мм2 на одну солнечную батарею мощностью 100 Вт;
    • на две батареи — 2,5 мм2;
    • три батареи — 4,0 мм2;
  • расстояние больше 10 метров:
    • для подключения одной панели берем 2,5 мм2;
    • двух — 4,0 мм2;
    • трех — 6,0 мм2.

Можно брать сечение больше, но не меньше (будут большие потери, а оно нам не надо). При покупке проводов, обратите внимание на фактическое сечение, так как сегодня заявленные размеры очень часто не соответствуют действительным. Для проверки придется измерять диаметр и считать сечение (как это делать, прочесть можно ).

При сборе системы можно плюсы солнечных батарей провести используя многожильный кабель подходящего сечения, а для минуса использовать один толстый. Перед подключением к аккумуляторам все «плюсы» пропускаем через диоды или диодные сборки с общим катодом. Это предотвращает возможность замыкания аккумулятора (может вызвать возгорание) при замыкании или обрыве проводов между батареями и аккумулятором.

Диоды используют типа SBL2040CT, PBYR040CT. Если такие на нашли, можно снять со старых блоков питания персональных компьютеров. Там обычно стоят SBL3040 или подобные. Пропускать через диоды желательно. Не забудьте что они сильно греются, так что монтировать их надо на радиаторе (можно на едином).

Еще в системе необходим блок предохранителей. По одному на каждого потребителя. Всю нагрузку подключаем через этот блок. Во-первых, система так безопаснее. Во-вторых, при возникновении проблем, проще определить ее источник (по сгоревшему предохранителю).

Постоянный рост цен на энергоносители, а также слаборазвитая инфраструктура некоторых регионов заставляют многих потребителей прибегать к внедрению альтернативных источников получения ресурса, среди которых можно выделить ветрогенераторы, тепловые насосы, водогрейные коллекторы.

Если же учесть, что львиная доля потребляемой энергии припадает на электричество, то становится ясно, почему в последнее время многих домашних умельцев интересует вопрос, можно ли изготовить солнечные батареи для дома своими руками, давайте разберемся с данным вопросом более детально.

Что представляет собой солнечная батарея

В основу любой солнечной батареи входят фотоэлементы, способные трансформировать естественное солнечное излучение в электрическую энергию. Ввиду чего в большинстве случаев конструкция стандартной гелиосистемы сводится к расположению отдельных генераторов электричества (фотоэлементов) в едином корпусе, который способен обеспечить защиту элементов от неблагоприятных внешних факторов и механических воздействий.

И хотя мощностные характеристики солнечных батарей сегодня еще далеки от идеала, все больше людей прибегают к использованию указанных источников в качестве дополнительных генераторов для решения базовых задач (например, для подзарядки аккумуляторных батарей, работы электроники и т.п.). Поэтому давайте в деталях рассмотрим технологию изготовления такой солнечной батареи, способной генерировать напряжение до 18 В с токовой нагрузкой до 8 А, то есть производить мощность порядка 130 Вт/час.

Выбор комплектующих для изготовления солнечной батареи

Прежде чем выполнять закупку комплектующих, следует учесть, что в качестве основных источников получения электричества сегодня в солнечных батареях могут использоваться фотоэлементы из поликристаллического и монокристаллического кремния, обладающие несколько отличными свойствами. И хотя, первые из них характеризуются относительно невысокой производительностью (КПД до 10%), их эффективная работа практически не изменяется от степени освещенности, тогда как второй вариант требует наличия постоянных солнечных лучей, что делает его менее востребованным для самостоятельного изготовления гелиопанелей.

Что же касается закупки солнечных элементов, то более оправданным вариантом считается обращение к интернет-ресурсам, за счет которых можно приобрести требуемые компоненты по минимальной стоимости. Вдобавок, многие специализированные проекты (например ebay) в состоянии предложить пользователю готовые комплекты солнечных фотоэлементов, снабженные всеми необходимыми комплектующими для сборки.

То есть на этапе заготовки следует позаботиться о приобретении фотоэлектрических панелей, причем дабы исключить ошибок в процессе закупки указанных элементов желательно придерживаться следующих рекомендаций:

  • Для возможности изготовления солнечной батареи способной заряжать 12 вольтовый аккумулятор, следует запастись как минимум 36 фотоэлементами (каждый выдает по 0,5 В), однако учитывая сложность сборки, специалисты рекомендуют 3-4 элемента купить про запас.
  • Подбирая солнечные фотоэлементы следует учитывать уровень энергопотребления и для изготовления одного модуля применять фотоэлементы с идентичными показателями по напряжению и току. Вдобавок не рекомендуется в одном модуле применять системы различных производителей.
  • С целью минимизации поломки фотоэлементов в процессе сборки, многие специалисты рекомендуют отдавать предпочтение изделиям с уже напаянными проводниками.

Вдобавок, на этапе заготовки, помимо активных элементов, следует позаботиться о приобретении комплектующих для изготовления каркаса, в качестве чего могут использоваться деревянные бруски или алюминиевые уголки, листовые материалы (ДВП, ДСП, текстолит), а также оргстекло или антиконденсатный поликарбонат.

Технология изготовления солнечной батареи (СБ) своими руками

Сборка корпуса для СБ

После заказа фотоэлементов и определения их габаритных размеров, можно приступать к изготовлению корпуса для солнечной батареи, для чего первым делом необходимо сделать эскиз будущей модели. Причем выполняя, указанную процедуру следует придерживаться следующих рекомендаций:

  • Корпус – место расположения фотоэлементов (своеобразный ящик) должен иметь хорошую механическую прочность и защищать электрогенераторы от всевозможных воздействий;
  • Габаритные размеры корпуса должны позволять беспрепятственно расположить в нем фотоэлементы (с минимальным зазором между ними 5 мм) и сопутствующие элементы (проводники, шинки);
  • Конструкция корпуса должна исключать попадания влаги внутрь батареи.

Как уже было сказано выше в качестве материалов для изготовления каркаса для солнечной батареи могут использоваться различные материалы (дерево, алюминий, пластик), но все же предпочтение следует отдавать влагоустойчивым компонентам.

Если же рассматривать процедуру изготовления каркаса пошагово, то можно отметить, что реализуются мероприятия в следующей последовательности:

  1. По имеющимся размерам из плотного листа фанеры или ДСП выпиливается заготовка, которая будет выступать днищем солнечной батареи;
  2. Из деревянных брусьев или алюминиевых уголков делаются бортики, которые фиксируются при помощи шурупов к подготовленному основанию по всему периметру. Причем для усиления каркаса некоторые специалисты рекомендуют выполнять дополнительное разделение каркаса на две, три части путем укладки дополнительных перемычек;
  3. В полученных бортах (в нижней части батареи), делаются сквозные отверстия (диаметром 5-6 мм с шагом 100-150 мм), что позволит воздуху циркулировать внутри батареи и исключит возможность образования влаги;
  4. Из более мягкого листового материала (к примеру, ДВП) изготавливается подложка, на которую впоследствии будут смонтированы фотоэлементы.

В финале работ все конструктивные элементы каркаса СБ следует вскрыть несколькими слоями краски, дабы защитить весь будущий модуль от деформации и разрушения. А также приготовить (выкроить по размеру каркаса) защиту (оргстекло), за счет которой фотоэлементы будут находиться в безопасности.

Соединение фотоэлементов

Для того, чтобы солнечная батарея своими руками полностью соответствовала техническим характеристикам очень важно правильно произвести интеграцию в каркас всех фотоэлементов. Поэтому первым делом потребуется на предполагаемой подложке нанести разметку, по которой будут установлены гелиомодули, для чего рекомендуется выложить все фотоэлементы на плоскости, обеспечить между ними требуемый зазор (можно применять дистанционные крестики для кафеля), и после этого осуществить их электрическое соединение. Причем выполняя указанную операцию, следует быть весьма щепетильным, ведь механическая прочность фотоэлементов весьма ограничена и даже небольшое надавливание в состоянии деформировать хрупкую основу комплектующих.

Электрическое соединение фотоэлементов для солнечной батареи следует выполнять таким образом, чтобы каждая последующая пластина, соединялась с предыдущей последовательно. Если же учесть, что в большинстве случаев плюсовой потенциал находится с лицевой части фотоэлемента, а минусовой с тыльной стороны, то соединение двух соседних источников выглядит как прокладка проводников от лицевой клеммы одной пластины к соответствующей тыльной клемме последующего элемента. А выводы с каждого ряда соединяются с последующими рядами при помощи больших по сечению проводов.

Сама же процедура соединения панелей в единую электрическую батарею производится при помощи маломощного паяльника (25 Вт), путем лужения и последующего припаивания проводников к заданным точкам.

Итогом таких работ должно стать два вывода, через которые полученное напряжение и будет устремляться к потребителю. Однако, для исключения саморазряда аккумулятора, подключенного к батарее (например, ночью) на общий плюсовой провод желательно установить шунтирующие диоды Шотке.

Механический монтаж панелей

После электрического соединения фотоэлементов следует выполнить их механическое закрепление на заранее подготовленной подложке. И хотя для этих целей могут использоваться различные методики, самым оптимальным, считается вариант крепежа панелей к основанию при помощи герметика на силиконовой основе. Единственно, на что следует обратить внимание при выполнении указанной операции, точка крепления для каждого элемента должна быть одна (обычно в центре), дабы во время работы всего устройства исключить механическую поломку хрупких элементов вследствие их температурного расширения. То есть каждая из 36 панелей закрепляется к основанию подложки при помощи силикона в четко установленном месте, в результате чего образуется общий источник энергии.

Финальная сборка солнечной батареи

Последним штрихом, собирая солнечные батареи для дома своими руками будет помещение полученной системы внутрь подготовленного каркаса и закрепление при помощи стандартных саморезов (подложка попросту прикручивается к днищу каркаса). После чего производится электрическое соединение отходящих проводников, и вся конструкция накрываются прозрачным оргстеклом, которое фиксируется к бортикам солнечной батареи при помощи саморезов.

Установка солнечной батареи

Сделанная вышеописанным образом СБ сможет генерировать достаточно энергии для зарядки 12 вольтового аккумулятора и тем самым снабжать мелких потребителей долгожданным ресурсом. Однако, учитывая стопроцентную зависимость работы солнечной батареи от ультрафиолетового излучения, большое внимание следует уделить правильности установки полученного электроприбора.

То есть монтировать солнечную батарею следует в месте максимальной солнечной активности, располагая лицевую часть под углом к горизонту 40-60 градусов в направлении юга или юго-запада. При этом очень важно исключить затенение батареи или чрезмерное ее загрязнение листвой, ввиду чего не рекомендуется данный источник монтировать под кроной деревьев, а наилучшим вариантом считается скат крыши.

Однако выполняя самостоятельную установку солнечных батарей, следует быть особо аккуратным и соблюдать определенные требования. Так, во-первых, несущая конструкция кровли под батарею должна обладать достаточной жесткостью, дабы противостоять дополнительным нагрузкам. Во-вторых, место установки должно быть легкодоступным (для обслуживания). В-третьих, в качестве проводников следует применять кабельную продукцию, устойчивую к интенсивному ультрафиолетовому излучению.

Рекомендации по изготовлению солнечной батареи своими руками

На основании всего вышесказанного можно сделать вывод, что солнечные батареи для дома своими руками – это вполне реально, главное не бояться и в процессе работ соблюдать ряд весьма важных рекомендаций:

  • Использовать для изготовления панелей лишь качественные материалы, способные защитить конструкцию от природных осадков и интенсивного излучения;
  • При проектировании, сборке и установке батарей отталкиваться от принципа модульности, ведь впоследствии мощность и напряжение СБ может быть значительно увеличены путем монтажа дополнительных фотоэлементов
  • Применяя герметик, следует быть осторожным и приступать к последующим процедурам, лишь после его полного высыхания (иначе на внутренней стенке оргстекла может образовываться конденсат);
  • В процессе сборки следует при помощи прибора (мультиметра) постоянно проверять уровень генерируемого напряжения (с фотоэлемента, с ряда фотоэлементов, со всего модуля).

Также следует отметить, что при необходимости такая солнечная батарея может быть использована и в походных условиях, что может потребовать некоторых конструктивных доработок. Так что ж за дело!

Солнечные батареи для дома своими руками


Солнечные батареи – это инновационные устройства, которые могут служить на благо человека, обеспечивая его возобновляемым энергоресурсом.

Как сделать фотоэлементы для солнечных батарей

Иногда сделать своими руками солнечную батарею бывает необходимо. Мы расскажем, как, из чего и для каких целей можно использовать самодельную СБ.

Людей, которые бы желали жить сделать в экологически чистом месте, вдали от шума цивилизации, становится все больше. Развитая промышленность загрязняет воздух и окружающую среду и вызывает распространение многих болезней, ослабляя иммунитет. Но отъезд подальше от города имеет некоторые сложности, в первую очередь это связано с отсутствием электроснабжения некоторых участков. Жить же в наше время без электричества практически невозможно. На Западе данная проблема решается установкой ветрогенератора, но этот способ имеет свои сложности. В первую очередь дело в дороговизне оборудования. К тому же, чтоб обеспечить целый дом, потребуется не один, а как минимум несколько генераторов. Одним из самых эффективных способов обеспечения электроэнергии дома считается использование солнечных батарей. Небольшую солнечную батарею можно построить своими руками, ведь заводские варианты не дешевы.

Узнаем, как сделать солнечную батарею

Основные элементы: где достать

По сути, солнечная батарея представляет собой контейнер, в котором располагают массив элементов, преобразующих энергию Солнца в электричество. Мы не зря употребили слово «массив». Дело в том, что чтобы обеспечить даже самый маленький домик энергией, элементов должно быть достаточно много.

А так как эти элементы имеют весьма хрупкую структуру, контейнер должен обеспечить их механическую защиту. Кроме того, в контейнере все элементы объединяются в один. Принцип работы батареи не сложен. Поэтому сделать ее можно и самостоятельно.

Для этого все-таки надо изучить теоретическую часть, так как солнечные батареи мало кто делает самостоятельно. Отсюда, кстати, и мнение, что сделать их сложно. Но на самом деле это не так. Основные выводы, полученные после изучения материала о создании данного источника электроэнергии, следующие:

  1. Самое главное – приобрести солнечные элементы, и желательно по доступной цене.
  2. Можно использовать бывшие в употреблении запчасти, ввиду высокой стоимости новых.
  3. Купить пластины, которые обладают небольшими повреждениями, можно на аукционах или по рекламе.

Таким образом, на солнечных элементах вполне можно сэкономить. А уж сделать своими руками контейнер не составит трудности.

Принцип работы

Если вы раньше особо не вникали в вопрос, как сделать солнечную батарею, то в первую очередь следует понять принцип ее работы. Если понять принцип, как она работает, то и вопрос, как ее сделать своими руками, не поставит вас в тупик. На самом деле ее конструкция вполне проста.

Как мы писали выше, солнечная батарея (СБ) - это некоторое количество фотоэлектрических преобразователей энергии, сделанных из кремния для генерации постоянного тока. Все элементы соединены и установлены в контейнере.

Преобразователи бывают трёх видов:

  • монокристаллические;
  • поликристаллические;
  • аморфные или тонкопленочные.

Фотоэлектрический эффект представляет собой следующее: свет от Солнца падает на фотоэлементы, после чего выбивает свободные электроны с последних орбит каждого атома кремниевой пластины. Свободные электроны начинают перемещаться между электродами, тем самым вырабатывая постоянный ток. Постоянный ток, в свою очередь, преобразовывается в переменный, которым и будет оснащаться здание.

схема преобразования солнечной энергии в элементах

Как правильно подобрать фотоэлемент

Так как фотоэлементы бывают аморфные, поликристаллические и монокристаллические, можно выбрать один из этих трех вариантов. Желательно это сделать до начала проектной работы. Рассмотрим основные характеристики каждого из видов.

  1. Монокристаллические имеют КПД 12-14%, но являются самыми чувствительными к лучам света. Если в вашей местности солнечных дней не так много, лучше этот вариант не рассматривать. Небольшая облачность способна существенно снизить КПД. Срок эксплуатации составляет 30 лет.
  2. Аморфные в своем составе имеют гибкий кремень. Их КПД составляет около 10%. Их производительность электричества не снижается даже в плохих погодных условиях. Однако они очень дороги, да и достать их бывает непросто.
  3. Поликристаллические имеют КПД до 9%. Они весьма доступны, их производительность не зависит от облачности, но срок эксплуатации меньше на треть – до 20 лет.

В специализированных магазинах можно найти любой из этих вариантов. Если же вы хотите немного сэкономить, выбирайте второй сорт. Эти элементы будут иметь небольшие дефекты, но на работе прибора это не скажется. Иногда цена на б. у. части ниже в 2-3 раза, что позволяет сэкономить должным образом, делая работу самостоятельно.

Как расположить для улучшения КПД

Так как КПД зависит в первую очередь от света, при выборе места под ваше устройство необходимо пользоваться следующим принципом: установку стоит проводить как можно выше. Именно поэтому устройства располагают чаще всего на крыше здания. Однако иногда бывает так, что дом при строительстве не рассчитан на больший вес, а данный способ получения электричества требует более крепких перекрытий. Тогда следует выбирать место на земле, которое в течение дня постоянно освещено.

Как расположить солнечную батарею

Что же касается угла падения лучей, то установку лучше ставить так, чтоб они падали перпендикулярно. В современных заводских установках владелец может корректировать угол наклона платформы. Сделать же это в самодельных вариантах не просто.

Угол наклона определяется как географическим месторасположением участка, так и уровнем солнцестояния на местности.

Самостоятельная работа

как сделать солнечную батарею

Сразу хочется сказать – не особо надейтесь, что сможете сами построить устройство, которое полностью покроет все расходы дома, и обеспечит здание электричеством в 220 Вольт. Размеры такой установки были бы огромны, ведь одна пластина генерирует электрический ток с напряжением всего 0,5 В. Оптимально для самоделки – номинальное напряжение в 18 вольт. На этот показатель мы и будем ориентироваться, рассчитывая необходимое количество фотоэлементов для батареи.

Важно: Корпус устройства представляет простой неглубокий ящик. Бортики лучше сделать как можно меньше, чтобы они не создавали тень. Материалом для него может быть фанера и рейки.

Бортики для лучшего крепления садим на клей и привинчиваем саморезами. Чтобы блоки было проще спаять, ящик делим на две части с помощью планки, зафиксированной по центру ящика.

Собираем каркас для фотоэлементов

каркас для фотоэлементов солнечной батареи из профиля

Защитная рамка или каркас – важнейшая часть устройства. Для ее создания в домашних условиях можно использовать алюминиевые уголки 30х30 мм или деревянные бруски.

Если вы решили использовать металлический профиль, фаска снимается напильником под углом 45 градусов. После того, как все части каркаса выпилены, они соединяются с помощью уголков. Защитное стекло приклеивается на готовый каркас с помощью силикона.

Важно: Функцию подложек могут выполнять два вырезанных куска ДВП. На них и будут крепиться солнечные элементы. Вместо ДВП можно использовать любой тонкий материал, обладающий жесткостью и не проводящий электрический ток.

Как соединять пластины

Чтобы правильно соединить пластины, надо знать некоторые принципы:

  1. Для увеличения напряжения в домашних условиях, при спаивании пластин нужно знать, что для увеличения напряжения соединять их надо последовательно, а для увеличения силы тока - параллельно.
  2. Промежуток между кремниевыми пластинами должен составлять 5 мм с каждой стороны. Это необходимо, так как при нагреве пластины могут расширяться.
  3. Каждый преобразователь имеют две дорожки: с одной стороны у них будет «плюс», с другой - «минус». Соединением все детали последовательно в единую цепь.
  4. Проводники с последних компонентов цепи надо вывести на общую шину.

Важно: чтобы избежать саморазряда устройства в ночное время или облачную погоду, можно сделать монтаж диода Шоттки 31DQ03 или другого аналога на контакт от «средней» точки.

Когда все работы по спайке закончены, с помощью мультиметра можно проверить выходное напряжение. Оно должно составлять 18–19В для обеспечения небольшого дома электроэнергией.

Как собрать панель

Устройство солнечной батареи

Итак, корпус у нас готов, и пора заняться панелью. В полученный ящик надо уложить спаянные преобразователи. В центре каждого фотоэлемента наносим силикон, и закрываем сверху подложкой из ДВП для их фиксации. Закрываем конструкцию крышкой, и для надежности все стыки герметизируем силиконом или герметиком. Полученная панель устанавливается на специальный держатель или каркас.

Важно: Чтобы защитить батарею от агрессивного воздействия среды и климата, применяют оргстекло, закрывающее лицевую сторону. Если батарея крупная, можно использовать два куска, но если позволяет ее размер – то можно вырезать один, тогда соединение будет без стыка.

Обычное стекло лучше не брать – оно слишком хрупкое, и в процессе эксплуатации может лопнуть.

Своими руками из того, что есть

Если цена на солнечные панели вас не устраивает, вы вполне можете создать свою установки из практически подручных материалов. Ниже мы рассмотрим, как сделать солнечную батарею своими руками из различных материалов – например, из транзисторов, диодов и фольги.

солнечная батарея своими руками из подручных средств

Транзисторы, как основа световых элементов

Транзисторы подходят под нашу цель, так как внутри у них располагается довольно большой кремневый полупроводниковый элемент, который и будет использоваться для производства электричества. Лучше всего остановить свой выбор на транзисторах типа КТ или П.

Важно: При сборке источника тока хорошим вариантом будет разработать монтажную плату из фольгированного стеклотекстолита. Плату, после распайки, нужно поместить в корпус подходящих размеров, а сверху закрыть пластиной из оргстекла. В результате мы можем получить источник тока из нескольких десятков транзисторов, который генерирует напряжение в несколько вольт при выходном токе в несколько миллиампер.

Начинаем работу. В первую очередь срезаем металлическую крышку с необходимого количества радиодеталей. Это сделать проще, если зажать транзистор в тисках и произвести срез аккуратно ножовкой по металлу. Внутри вы увидите пластину. Это и есть главная часть нашего будущего устройства. Он будет служить нам фотоэлементом.

Деталь будет иметь три контакта: база, эмиттер и коллектор. Во время сборки выбирайте коллекторный переход в связи с наибольшей разностью потенциалов.

Своими руками сборку лучше делать на ровной поверхности из любого диэлектрического материала.

Важно: Все транзисторы спаиваем в отдельные последовательные цепочки, которые, в свою очередь, необходимо соединять параллельно. Расчет источника тока делаем, основываясь на характеристиках радиодеталей. В среднем, один транзистор выдает напряжение 0,35 В при силе тока при КЗ в 0,25 мкА.

Те транзисторы, которые вы собираетесь использовать при создании солнечных батарей, перед работой следует проверить. Для этих целей берем простой мультиметр. Необходимо переключить прибор в режим измерения тока, включить его между базой и коллектором или эмиттером транзистора. Снимаем показатель – обычно прибор демонстрирует небольшой ток - доли миллиампера, реже чуть больше 1 мА. Далее переключаем прибор в режим измерения напряжения (предел 1-3 В), и получаем значение выходного напряжения (оно составит порядка нескольких десятых долей вольта). Транзисторы желательно группировать с близкими значениями выходных напряжений.

Используем диоды

Вторым популярным материалом для самодельного источника энергии считается диод. Диоды Д223Б могут стать действительно альтернативным источником электрического тока. Они имеют наибольший вольтаж, и заключены в стеклянном корпусе. Один диод может сгенерировать 350 мВ на солнце, исходя из этого, можно определить и напряжение на выходе готового изделия.

Произведя расчёты, подбираем нужное количество диодов. Их необходимо сложить в емкость и залить ацетоном. Можно использовать и другой растворитель. Это необходимо, чтобы снять краску со стекла.

Берем пластину из не металлического материала, и делаем на ней разметку, куда будут впаяны компоненты источника питания. Через несколько часов краска, как раз пока делается разметка, станет мягкой, и ее можно легко соскрести.

Солнечная панель на диодах

Далее необходимо определить плюсовой контакт – для этого используем мультиметр. Определяем контакт под лампочкой или на солнце. Впаиваем диоды параллельно, так как в данном случае кристалл лучше всего будет генерировать энергию от солнца. В результате на выходе будет максимальное напряжение.

Важно: для самостоятельной сборки можно выбрать диоды Д223Б. Они лучше всего подходят, так как имеют стеклянный и небольшой корпус, и их можно установить достаточно плотно. К тому же, напряжение в них одно из самых больших(целых 350 мВ под солнцем).

Как использовать фольгу

Фольгу также можно использовать для создания источника питания, однако энергии она будет давать немного. Подходит обычная фольга, размером 45 квадратных см. Ее необходимо промыть в мыльной воде, чтобы удалить любой жир. Вот пошаговая инструкция:

  1. Используя шкурку, удаляем любой вид коррозии.
  2. На электрическую плитку с мощностью от 1,1кВт кладем лист фольги, и нагреваем до тех пор, пока на ней не появятся оранжево-красные пятна. Если нагревать далее, пятна станут черные, что будет говорить об образовании оксида меди.
  3. Продолжаем нагревать еще минут 30, чтобы оксидная пленка стала нужной толщины. Выключаем горелку и даем листу остыть. Медленно остывая, оксид начинает отходить. Под проточной водой удаляем остатки оксида, не сгибая и не повреждая лист и тонкий слой окиси.
  4. Вновь вырезаем такой же кусок фольги – по размеру первого.
  5. Берем пластиковую бутылку, обрезаем горлышко и засовываем туда оба куска, закрепляя их зажимами. Они должны быть расположены так, чтобы не соединяться. К тому куску, который мы нагревали, проводим минусовую клемму, а ко второму – плюсовую.

В бутылку заливаем солевой раствор так, чтобы до кромки электродов оставалась примерно 2,5 см.

Схема солнечной батареи из фольги

Аккумулятор для дачи готов.

Конечно, такого самодельного прибора не хватит для обеспечения дома, но зато ее можно использовать для подзарядки мелких электроприборов или в виде питания радиоприемника.

Как сделать фотоэлементы для солнечных батарей


Как сделать фотоэлементы для солнечных батарей – Как сделать солнечную батарею своими руками? Фото, видео, схемы

Солнечная энергетика - это просто здорово, но вот в чем проблема: даже одна батарея стоит немалых денег, а для хорошего эффекта нужна не одна, и даже не две. Потому и приходит идея - собрать все самому. Если есть у вас небольшой навык пайки - это сделать просто. Вся сборка заключается в том, чтобы последовательно соединить элементы в дорожки, а дорожки закрепить на корпусе. Сразу скажем о цене. Набор для одной панели (36 штук) стоит в районе 70-80$. А полностью со всеми материалами солнечные батареи своими руками обойдутся вам примерно в 120-150$. Намного меньше, чем заводские. Но нужно сказать, что и по мощности они будут тоже меньше. В среднем каждый фотопреобразователь выдает 0,5 В, если последовательно соединить 36 штук, это будет порядка 18 В.

Немного теории: типы фотоэлементов для солнечных батарей

Самая большая проблема - приобрести фотоэлектрические преобразователи. Это те самые кремниевые пластины, которые преобразуют солнечный свет в электричество. Вот тут нужно немного разбираться в типах фотоэлементов. Их выпускают двух типов: поликристаллические и монокристаллические. Монокристаллические более дорогие, но имеют более высокий КПД - 20-25%, поликристаллические - дешевле, но и производительность у них меньше - 17-20%. Как их отличить внешне? Поликристаллические имеют ярко-синий цвет. Монокристаллические немного темнее и у них не квадратная, а многогранная форма - квадрат со срезанными краями.

О форме выпуска. Есть фотоэлементы для солнечных батарей с уже припаянными проводниками, а есть наборы, где проводники прилагаются и все нужно паять самостоятельно. Что покупать решает каждый сам, но нужно сказать, что без навыка хотя-бы одну пластину вы повредите, а скорее, не одну. А если и паять умеете не очень… то лучше немного дороже заплатить, но получить уже почти готовые к использованию детали.

Сделать фотоэлементы для солнечных батарей своими руками нереально. Для этого нужно уметь выращивать кристаллы кремния, а потом его еще обрабатывать. Потому нужно знать, где купить. Об этом дальше.

Где и как купить фотоэлементы

Теперь о качестве. На всех китайских площадках типа Ebay или Alibaba продается отбраковка. Те детали, которые не прошли тесты на заводе. Потому идеальной батареи вы не получите. Но цена у них не самая большая, так что можно смириться. Во всяком случае, на первых порах. Соберите пару тестовых солнечных батарей своими руками, набейте руку, а потом можно брать с завода.

Некоторые продают фотоэлементы запаянными в воск. Это предотвращает их порчу при перевозке, но избавиться от воска и не повредить пластины довольно сложно. Нужно все вместе их окунуть в горячую, но не кипящую воду. Подождать пока воск растает, потом аккуратно разъединять. Потом поочередно купать каждую пластину в горячем мыльном растворе, потом окуная в чистую горячую воду. Таких «омовений» моет понадобиться несколько, воду и мыльный раствор придется менять, и не один раз. После того как воск удалите, чистые пластины разложите на махровом полотенце для просушки. Очень хлопотное это дело. Так что лучше покупайте без воска. Так намного проще.

Теперь о покупках на китайских площадках. Конкретно о Ebay и Alibaba. Они проверены, тысячи людей ежедневно там что-то покупают. Система ничем не отличается. После регистрации, как обычно, в строке поиска набираете название элемента. Потом выбираете понравившееся по какой-то причине предложение. Обязательно выбирайте из тех вариантов, где есть бесплатная доставка (на английском free shipping). Если такой пометки нет, то доставку придется оплачивать отдельно. А она часто больше стоимости товара и уж точно больше той разницы, что вы выгадаете на цене.

Ориентироваться нужно не только на цену, но и на рейтинг продавца и на отзывы. Внимательно читайте и состав товара, его параметры и отзывы. Можно с продавцом общаться, только сообщения писать нужно на английском.

По поводу оплаты. Она на этих площадках переводится продавцу только после того, как вы отпишитесь в получении товара. А пока идет доставка, ваши деньги лежат на счете торговой площадки. Оплачивать можно с карты. Если боитесь светить данные карты, воспользуйтесь промежуточными сервисами. Они есть разные, но суть одна - ваша карта не засветится. Есть на этих площадках и возврат товара, но это долгая песня, так что лучше брать у проверенных продавцов (с хорошим рейтингом и отзывами).

Да. Посылка идет в зависимости от региона. И дело не столько в том, как долго она будет идти из Китая, как в том, как скоро ее доставит почта. В лучшем случае - недели три, но может и полтора месяца.

Как собрать

Сборка солнечной батареи своими руками состоит из трех этапов:

  1. Изготовление каркаса.
  2. Пайка солнечных элементов.
  3. Укладка в каркас и герметизация.

Каркас изготовить можно из алюминиевых уголков или из деревянных реек. Но форма каркаса, материалы, последовательность изготовления зависят от способа установки.

Способ первый: установка на окне

Батарею вешают на окне, на раму изнутри помещения или снаружи, но тоже на окне. Тогда нужно делать каркас из алюминиевого уголка, а к нему приклеивать стекло или поликарбонат. В этом случае между фотоэлементами остаются хоть небольшие зазоры, через которые немного света проникает в помещение. Размеры рамы выбираете исходя из размеров ваших фотоэлементов и того, как вы собираетесь их располагать. Также некоторую роль могут сыграть габариты окна. Учтите, что плоскость должна быть ровная - фотоэлектрические преобразователи очень хрупкие, и при малейшем перекосе будут трескаться.

Развернув готовую раму с приклеенным стеклом лицом вниз, на поверхность стекла нанести слой герметика. На герметик, снова-таки лицевой стороной вниз, разложить собранные из фотоэлементов линейки.

Из толстого упругого поролона (толщина не менее 4 см) и куска полиэтиленовой пленки (200 мк) сделать мат: поролон обтянуть пленкой и хорошо скрепить. Лучше полиэтилен спаять, но можно и скотчем воспользоваться, только все стыки должны находиться на одной стороне. Вторая должна быть ровной и гладкой. По размерам мат должен хорошо ложиться в раму (без загибов и усилий).

Уложили мат на фотоэлементы, утопленные в герметике. На него доску, которая по размерам чуть меньше рамы, а на доску солидный груз. Это нехитрое устройство поможет выгнать пузыри воздуха, которые оказались под фотоэлементами. Воздух снижает производительность, причем очень сильно. Потому чем меньше пузырьков будет, тем лучше. Всю конструкцию оставляете на 12 часов.

Теперь время снять груз и отлепить мат. Делаете это медленно и не спеша. Важно не повредить пайку и проводники. Потому тяните плавно, без рывков. После того, как мат сняли, панель нужно оставить на некоторое время - досохнуть. Когда герметик перестанет липнуть, можно навешивать панель и пользоваться.

Вместо длительной процедуры с герметиком можно взять специальную пленку для герметизации. Она называется EVA. Просто сверху на собранную и уложенную на стекло батарею расстилаете пленку и греете ее строительным феном до полной герметизации. Времени уходит в разы меньше.

Способ второй: установка на стене, крыше и т.д.

В этом случае все иначе. Задняя стенка должна быть плотной и не проводящей ток. Возможно - деревянной, фанерной и т.п. Потому имеет смысл и раму сделать из деревянных брусков. Только высота корпуса должна быть небольшой, чтобы тень от бортиков не мешала.

На фото корпус состоит из двух половинок, но это совсем необязательно. Просто легче собирать и укладывать короткие линейки, но соединений в этом случае будет больше. Да. Несколько нюансов: нужно в корпусе предусмотреть несколько отверстий. В нижней части нужны несколько штук для выхода конденсата, а также два отверстия для вывода проводников от батареи.

Затем корпус батареи покрасить белой краской - кремниевые пластины имеют довольно широкий диапазон рабочих температур, но он не безграничен: от -40 o Cдо +50 o C. А летом в закрытой коробке +50 o C набегает легко. Потому и нужен белый цвет, чтобы не перегревались фотопреобразователи. Перегрев, как и переохлаждение, ведет к снижению эффективности. Это, кстати, может стать объяснением непонятного явления: полдень, солнце жарит, а батарея стала давать меньше электричества. А она просто перегрелась. Для южных регионов, наверное, нужно уложить фольгу. Это будет эффективнее. Причем производительность, скорее всего, возрастет: будет улавливаться еще и отраженное фольгой излучение.

После того как краса высохла, можно укладывать собранные дорожки. Но в этот раз лицом вверх. Как их крепить? На каплю термостойкого герметика посредине каждой пластины. Почему не нанести по всей поверхности? Из-за температурного расширения пластина будет менять размеры. Если приклеить ее только посередине, с ней ничего не случиться. Если будет хотя-бы две точки - она рано или поздно лопнет. Потому аккуратно посередине наносите каплю, мягко прижимаете пластину. Не давите - раздавить очень легко.

В некоторых случаях пластины сначала крепились на основу - лист ДВП, выкрашенный в тот же белый цвет. А потом уже на основе закреплялись к корпусу шурупами.

После того, как все линейки уложены, последовательно их соединяете. Чтобы проводники не болтались, их можно зафиксировать несколькими каплями герметика. Вывести провода от элементов можно через днище или через бортик - как удобнее. Протяните их через отверстие, а потом залейте дырку все тем же герметиком. Теперь нужно дать всем соединениям высохнуть. Если накрыть крышкой раньше, на стекле и фотоэлементах образуется налет, который сильно снижает эффективность батареи. Потому ждем как минимум сутки (или столько, сколько указано на упаковке герметика).

Теперь дело за малым - накрыть все стеклом или прозрачным пластиком. Как крепить — дело ваше. Но на первых порах не герметизируйте. По крайней мере, до испытания. Может где-то обнаружится проблема.

И еще один нюанс. Если планируете в систему подключать аккумуляторы, понадобится поставить диод, который будет предотвращать разряд аккумулятора через батарею в ночное время или в плохую погоду. Лучше всего поставить диод «Шоттки». Его подсоединяю к батарее последовательно. Установить его лучше внутри конструкции - при высоких температурах у него уменьшается падение напряжения, т.е. в рабочем состоянии он будет меньше «садить» напряжение.

Как паять элементы для солнечной батареи

Немного об обращении с кремниевыми пластинами. Они очень-очень хрупкие, легко трескаются и ломаются. Потому обращаться нужно с ними с крайней осторожностью, хранить в жесткой таре подальше от детворы.

Работать нужно на ровной твердой поверхности. Если стол покрыт клеенкой, положите лист чего-то твердого. Пластина не должна прогибаться, а всей поверхностью жестко опираться на основу. Причем основание должно быть гладким. Как показывает опыт, идеальный вариант - кусок ламината. Он, жесткий, ровный, гладкий. Паяют на тыльной стороне, не на лицевой.

Для пайки использовать можно флюс или канифоль, любой из составов в маркере для пайки. Тут у каждого свои пристрастия. Но желательно, чтобы состав не оставлял следов на матрице.

Укладываете кремниевую пластину лицом вверх (лицо - синяя сторона). На ней есть две или три дорожки. Их промазываете флюсом или маркером, спиртовым (не водно-спиртовым) раствором канифоли. В комплекте с фотопреобразователями идет обычно тонкая контактная лента. Иногда она нарезана на куски, иногда идет в катушке. Если лента намотана на катушку, отрезать нужно кусок, равный двойной ширине солнечного элемента, плюс 1 см.

На обработанную флюсом полосу припаиваете отрезанный кусок. Лента получается намного длиннее пластинки, весь остаток остается с одной стороны. Старайтесь вести паяльник не отрывая. Насколько это возможно. Для более качественной пайки на кончике жала у вас должна быть капля припоя или олова. Тогда пайка будет качественной. Непропаянных мест быть не должно, хорошо все прогревайте. Но не давите! Особенно по краям. Это очень хрупкие изделия. Поочередно припаиваете ленты на все дорожки. Фотопреобразователи получаются «хвостатые».

Теперь, собственно, о том, как собрать солнечную батарею своими руками. Приступаем к сборке линейки. С обратной стороны пластинки тоже есть дорожки. Теперь «хвост» от верхней пластины припаиваем к нижней. Технология такая же: дорожку промазываем флюсом, потом пропаиваем. Так последовательно соединяем нужное количество фотоэлектрических преобразователей.

В некоторых вариантах на задней стороне не дорожки, а площадки. Тогда пайки меньше, но претензий по качеству может быть больше. В этом случае промазываем флюсом только площадки. И паяем тоже только на них. Вот, собственно, все. Собранные дорожки можно переносить на основание или корпус. Но есть еще множество хитростей.

Так, например, между фотоэлементами нужно выдерживать определенное расстояние (4-5 мм), что без фиксаторов не так и легко. Малейший перекос, и есть возможность порвать проводник, или сломать пластинку. Потому для задания определенного шага на кусок ламината приклеивают строительные крестики (используются при укладке плитки), или делают разметку.

Все проблемы, которые возникают при изготовлении солнечных батарей своими руками, связаны с пайкой. Потому перед герметизацией, а лучше еще и перед переносом линейки на корпус, проверить сборку амперметром. Если все нормально, можно продолжать работу.

Итоги

Теперь вы знаете, как сделать солнечную батарею в домашних условиях. Дело не самое сложное, но требует кропотливой работы.

Наверное, нет такого человека, который не хотел бы стать более независимым. Возможность полностью распоряжаться собственным временем, путешествовать, не зная границ и расстояний, не задумываться о жилищных и финансовых проблемах - вот что даёт ощущение настоящей свободы. Сегодня мы расскажем о том, как, используя солнечное излучение, снять с себя бремя энергетической зависимости. Как вы догадались, речь пойдёт о солнечных батареях. А если быть точнее, то о том, можно ли своими руками построить настоящую солнечную электростанцию.

История создания и перспективы использования

Идею превращения энергии Солнца в электричество человечество вынашивало давно. Первыми появились гелиотермальные установки, в которых перегретый сконцентрированными солнечными лучами пар вращал турбины генератора. Прямое преобразование стало возможным лишь в середине XIX века, после того, как француз Александр Эдмон Баккарель открыл фотоэлектрический эффект. Попытки создать на основании этого явления действующую солнечную ячейку увенчались успехом лишь полвека спустя, в лаборатории выдающегося русского учёного Александра Столетова. Полностью описать механизм фотоэлектрического эффекта удалось ещё позже - человечество обязано этим Альберту Энштейну. К слову, именно за эту работу он получил Нобелевскую премию.

Баккарель, Столетов и Энштейн - вот те учёные, которые заложили фундамент современной солнечной энергетики

О создании первого солнечного фотоэлемента на основе кристаллического кремния возвестили мир сотрудники компании Bell Laboratories в далёком апреле 1954 года. Эта дата, по сути, и является отправной точкой технологии, которая в скором времени сможет стать полноценной заменой углеводородному топливу.

Поскольку ток одной фотоэлектрической ячейки составляет миллиамперы, то для получения электроэнергии достаточной мощности их приходится соединять в модульные конструкции. Защищённые от внешнего воздействия массивы солнечных фотоэлементов и являются солнечной батареей (из-за плоской формы устройство нередко называют солнечной панелью).

Преобразование солнечного излучения в электричество имеет огромные перспективы, ведь на каждый квадратный метр земной поверхности приходится в среднем 4.2 кВт/час энергии в день, а это экономия практически одного барреля нефти в год. Изначально используемая лишь для космической отрасли технология уже в 80-х годах прошлого века стала настолько обыденной, что фотоэлементы стали использовать в бытовых целях - в качестве источника питания калькуляторов, фотоаппаратов, светильников и т. д. Параллельно создавались и «серьёзные» гелиоэлектрические установки. Закреплённые на крышах домов, они позволяли полностью отказаться от проводного электричества. Сегодня можно наблюдать рождение электростанций, представляющих собой многокилометровые поля из кремниевых панелей. Вырабатываемая ими мощность позволяет питать целые города, поэтому можно с уверенностью говорить о том, что будущее - за солнечной энергетикой.

Современные солнечные электростанции представляют собой многокилометровые поля фотоэлементов, способные снабжать электричеством десятки тысяч домов

Солнечная батарея: как это работает

После того как Энштейн описал фотоэлектрический эффект, миру открылась вся простота такого, казалось бы, сложного физического явления. В его основе лежит вещество, отдельные атомы которого находятся в неустойчивом состоянии. При «бомбардировке» фотонами света из их орбит выбиваются электроны - вот они-то и являются источниками тока.

Практически полвека фотоэффект не имел практического применения по одной простой причине - отсутствовала технология получения материалов с неустойчивой атомной структурой. Перспективы дальнейших исследований появились лишь с открытием полупроводников. Атомы этих материалов имеют либо избыток электронов (n-проводимость), или же испытывают в них нехватку (p-проводимость). При использовании двухслойной структуры со слоем n-типа (катод) и p-типа (анод), «обстрел» фотонами света выбивает электроны из атомов n-слоя. Покидая свои места, они устремляются на свободные орбиты атомов p-слоя и далее через подключённую нагрузку возвращаются на исходные позиции. Наверное, каждый из вас знает, что движение электронов в замкнутом контуре представляет собой электрический ток. Вот только заставить электроны перемещаться удаётся не благодаря магнитному полю, как в электрических генераторах, а за счёт потока частиц солнечного излучения.

Солнечная панель работает благодаря фотоэлектрическому эффекту, который был открыт ещё в начале XIX века

Поскольку мощность одного фотоэлектрического модуля недостаточна для питания электронных устройств, то для получения требуемого напряжения используется последовательное подключение множества ячеек. Что же касается силы тока, то её наращивают параллельным соединением определённого количества таких сборок.

Генерация электричества в полупроводниках напрямую зависит от количества солнечной энергии, поэтому фотоэлементы не только устанавливают под открытым небом, но и стараются сориентировать их поверхность перпендикулярно падающим лучам. А чтобы защитить ячейки от механических повреждений и атмосферного воздействия, их монтируют на жёстком основании и сверху защищают стеклом.

Классификация и особенности современных фотоэлементов

Первую солнечную ячейку изготовили на основе селена (Se), однако низкий КПД (менее 1%), быстрое старение и высокая химическая активность селеновых фотоэлементов вынуждали искать другие, более дешёвые и эффективные материалы. И они нашлись в лице кристаллического кремния (Si). Поскольку этот элемент периодической таблицы является диэлектриком, его проводимость обеспечили за счёт включений из различных редкоземельных металлов. В зависимости от технологии изготовления существует несколько типов кремниевых фотоэлементов:

  • монокристаллические;
  • поликристаллические;
  • из аморфного Si.

Первые изготавливаются методом срезания тончайших слоёв от слитков кремния самой высокой степени очистки. Внешне фотоэлементы монокристаллического типа выглядят как однотонные тёмно-синие стеклянные пластины с выраженной электродной сеткой. Их КПД достигает 19%, а срок службы составляет до 50 лет. И хоть производительность изготовленных на основе монокристаллов панелей постепенно падает, есть данные, что изготовленные более 40 лет назад батареи и сегодня сохраняют работоспособность, выдавая до 80% своей первоначальной мощности.

Монокристаллические солнечные ячейки имеют однородный тёмный цвет и срезанные углы - эти признаки не позволяют спутать их с другими фотоэлементами

В производстве поликристаллических фотоэлементов используют не такой чистый, но зато более дешёвый кремний. Упрощение технологии сказывается на внешнем виде пластин - они имеют не однородный оттенок, а более светлый узор, который образуют границы множества кристаллов. КПД таких солнечных ячеек немного ниже, чем у монокристаллических - не более 15%, а срок службы составляет до 25 лет. Надо сказать, что снижение основных эксплуатационных показателей абсолютно не сказалось на популярности поликристаллических фотоэлементов. Они выигрывают за счёт более низкой цены и не такой сильной зависимости от внешней загрязнённости, низкой облачности и ориентации на Солнце.

Поликристаллические фотоэлементы имеют более светлый синий оттенок и неоднородный рисунок - следствие того, что их структура состоит из множества кристаллов

Для солнечных батарей из аморфного Si используется не кристаллическая структура, а тончайший слой кремния, который напыляют на стекло или полимер. Хоть подобный метод производства и является самым дешёвым, такие панели имеют самый короткий срок жизни, причиной чему является выгорание и деградация аморфного слоя на солнце. Не радует этот тип фотоэлементов и производительностью - их КПД составляет не более 9% и во время эксплуатации существенно снижается. Использование солнечных батарей из аморфного кремния оправдано в пустынях - высокая солнечная активность нивелирует падение производительности, а бескрайние просторы позволяют размещать гелиоэлекростанции любой площади.

Возможность напылять кремниевую структуру на любую поверхность позволяет создавать гибкие солнечные панели

Дальнейшее развитие технологии производства фотоэлектрических элементов вызвано необходимостью в снижении цены и улучшении эксплуатационных характеристик. Максимальной производительностью и долговечностью сегодня обладают плёночные фотоэлементы:

  • на основе теллурида кадмия;
  • из тонких полимеров;
  • с использованием индия и селенида меди.

О возможности применения в самодельных устройствах тонкоплёночных фотоэлементов говорить пока ещё рано. Сегодня их выпуском занимается только несколько наиболее «продвинутых» в технологическом плане компаний, поэтому чаще всего гибкие фотоэлементы можно увидеть в составе готовых солнечных панелей.

Какие фотоэлементы лучше всего подходят для солнечной батареи и где их можно найти

Изготовленные кустарным способом солнечные панели всегда будут находиться на шаг позади своих заводских собратьев, и на то есть несколько причин. Во-первых, известные производители тщательно отбирают фотоэлементы, отсеивая ячейки с нестабильными или сниженными параметрами. Во-вторых, при изготовлении гелиоэлектрических батарей используется специальное стекло с повышенным светопропусканием и сниженной отражающей способностью - найти такое в продаже практически невозможно. И в-третьих, прежде чем приступать к серийному выпуску, все параметры промышленных образцов обкатывают с использованием математических моделей. В итоге минимизируется влияние нагрева ячеек на КПД батареи, улучшается система отвода тепла, находится оптимальное сечение соединяющих шин, исследуются пути снижения скорости деградации фотоэлементов и т. д. Решать подобные задачи, не имея оборудованной лаборатории и соответствующей квалификации, невозможно.

Низкая стоимость самодельных солнечных батарей позволяет построить установку, позволяющую полностью отказаться от услуг энергокомпаний

Тем не менее сделанные своими руками солнечные батареи показывают неплохие результаты производительности и не так уж и сильно отстают от промышленных аналогов. Что же касается цены, то здесь мы имеем выигрыш более чем в два раза, то есть при одинаковых затратах самоделки дадут в два раза больше электроэнергии.

Учитывая всё вышесказанное, вырисовывается картина того, какие фотоэлементы подходят под наши условия. Плёночные отпадают по причине отсутствия в продаже, а аморфные - из-за короткого срока службы и низкого КПД. Остаются ячейки из кристаллического кремния. Надо сказать, что в первом самодельном устройстве лучше использовать более дешёвые «поликристаллы». И только обкатав технологию и «набив руку», следует переходить на монокристаллические ячейки.

Для обкатки технологий подойдут дешёвые некондиционные фотоэлементы - как и качественные устройства, их можно купить на зарубежных торговых площадках

Что касается вопроса, где взять недорогие солнечные элементы, то их можно найти на зарубежных торговых площадках типа Taobao, Ebay, Aliexpress, Amazon и др. Там они продаются как в виде отдельных фотоэлементов различных размеров и производительности, так и готовыми наборами для сборки солнечных панелей любой мощности.

Продавцы нередко предлагают фотоэлементы так называемого класса «B», которые представляют собой повреждённые солнечные батареи моно- или поликристаллического типа. Небольшие сколы, трещины или отсутствие уголков практически не сказывается на производительности ячеек, зато позволяет приобрести их по гораздо меньшей стоимости. Именно по этой причине их выгоднее всего использовать в самодельных гелиоэнергетических устройствах.

Можно ли заменить фотоэлектрические пластины чем-то другим

Редко у какого домашнего мастера не найдётся заветной коробочки со старыми радиодеталями. А ведь диоды и транзисторы от старых приёмников и телевизоров являются всё теми же полупроводниками с p-n-переходами, которые при освещении солнечным светом вырабатывают ток. Воспользовавшись этими их свойствами и соединив несколько полупроводниковых приборов, можно сделать самую настоящую солнечную батарею.

Для изготовления маломощной солнечной батареи можно использовать старую элементную базу полупроводниковых приборов

Внимательный читатель сразу же спросит, в чём подвох. Зачем платить за фабричные моно- или поликристаллические ячейки, если можно использовать то, что лежит буквально под ногами. Как всегда, дьявол скрывается в деталях. Дело в том, что самые мощные германиевые транзисторы позволяют получить на ярком солнце напряжение не более 0.2 В при силе тока, измеряемой микроамперами. Для того чтобы достичь параметров, которые выдаёт плоский кремниевый фотоэлемент, понадобится несколько десятков, а то и сотен полупроводников. Сделанная из старых радиодеталей батарея сгодится разве что для зарядки кемпингового светодиодного фонаря или небольшого аккумулятора мобильного телефона. Для реализации более масштабных проектов, без покупных солнечных ячеек не обойтись.

На какую мощность солнечных батарей можно рассчитывать

Задумываясь о строительстве собственной солнечной электростанции, каждый мечтает о том, чтобы полностью отказаться от проводного электричества. Для того чтобы проанализировать реальность этой затеи, сделаем небольшие расчёты.

Узнать суточное потребление электроэнергии несложно. Для этого достаточно заглянуть в присланный энергосбывающей организацией счёт и разделить количество указанных там киловатт на число дней в месяце. К примеру, если вам предлагают оплатить 330 кВт×час, то это значит, что суточное потребление составляет 330/30=11 кВт×час.

График зависимости мощности солнечной батареи в зависимости от освещённости

В расчётах следует обязательно учитывать тот факт, что солнечная панель будет вырабатывать электричество только в светлое время суток, причём до 70% генерации осуществляется в период с 9 до 16 часов. Кроме того, эффективность работы устройства напрямую зависит от угла падения солнечных лучей и состояния атмосферы.

Небольшая облачность или дымка снизят эффективность токоотдачи гелиоустановки в 2–3 раза, тогда как затянутое сплошными облаками небо спровоцирует падение производительности в 15–20 раз. В идеальных условиях для генерации 11 кВт×час энергии было бы достаточно солнечной батареи мощностью 11/7 = 1.6 кВт. Учитывая влияние природных факторов, этот параметр следует увеличить примерно на 40–50%.

Кроме того, есть ещё один фактор, заставляющий увеличить площадь используемых фотоэлементов. Во-первых, не следует забывать о том, что ночью батарея работать не будет, а значит, понадобятся мощные аккумуляторы. Во-вторых, для питания бытовых приборов нужен ток напряжением 220 В, поэтому понадобится мощный преобразователь напряжения (инвертор). Специалисты утверждают, что потери на накопление и трансформацию электроэнергии забирают до 20–30% от её общего количества. Поэтому реальная мощность солнечной батареи должна быть увеличена на 60–80% от расчётной величины. Принимая значение неэффективности в 70%, получаем номинальную мощность нашей гелиопанели, равную 1.6 + (1.6×0.7) =2.7 кВт.

Использование сборок из высокотоковых литиевых аккумуляторов является одним из наиболее изящных, но отнюдь не самым дешёвым способом хранения солнечной электроэнергии

Для хранения электроэнергии понадобятся низковольтные аккумуляторы, рассчитанные на напряжение 12, 24 или 48 В. Их ёмкость должна быть рассчитана на суточное потребление энергии плюс потери на трансформацию и преобразование. В нашем случае понадобится массив батарей, рассчитанных на хранение 11 + (11×0.3) = 14.3 кВт×час энергии. Если использовать обычные 12-вольтовые автомобильные аккумуляторы, то понадобится сборка на 14300 Вт×ч / 12 В = 1200 А×ч, то есть шесть аккумуляторов, рассчитанных на 200 ампер-часов каждый.

Как видите, даже для того, чтобы обеспечить электричеством бытовые потребности средней семьи, понадобится серьёзная гелиоэлектрическая установка. Что касается использования самодельных солнечных батарей для отопления, то на данном этапе такая затея не выйдет даже на границы самоокупаемости, не говоря уж о том, чтобы можно было что-то сэкономить.

Расчёт размера батареи

Размер батареи зависит от требуемой мощности и габаритов источников тока. При выборе последних вы обязательно обратите внимание на предлагаемое разнообразие фотоэлементов. Для использования в самодельных устройствах удобнее всего выбирать солнечные ячейки среднего размера. Например, рассчитанные на выходное напряжение 0.5 В и силу тока до 3 А поликристаллические панели размером 3×6 дюймов.

При изготовлении солнечной батареи они будут последовательно соединяться в блоки по 30 шт, что позволит получить требуемое для зарядки автомобильной батареи напряжение 13–14 В (учитывая потери). Максимальная мощность одного такого блока составляет 15 В × 3 А = 45 Вт. Исходя из этого значения, будет нетрудно подсчитать, сколько элементов понадобится для постройки солнечной панели заданной мощности и определить её размеры. Например, для постройки 180-ваттного солнечного электрического коллектора понадобится 120 фотоэлементов общей площадью 2160 кв. дюймов (1.4 кв.м).

Постройка самодельной солнечной батареи

Прежде чем приступать к изготовлению солнечной панели, следует решить задачи по её размещению, рассчитать габариты и подготовить необходимые материалы и инструмент.

Правильный выбор места установки - это важно

Поскольку солнечная панель будет изготавливаться своими руками, соотношение её сторон может быть любым. Это очень удобно, поскольку самодельное устройство можно более удачно вписать в экстерьер кровли или дизайн загородного участка. По этой же причине выбирать место для монтажа батареи следует ещё до начала проектировочных мероприятий, не забывая учитывать несколько факторов:

  • открытость места для солнечных лучей в течение светового дня;
  • отсутствие затеняющих построек и высоких деревьев;
  • минимальное расстояние до помещения, в котором установлены аккумулирующие мощности и преобразователи.

Конечно, установленная на крыше батарея выглядит более органично, однако размещение устройства на земле имеет больше преимуществ. В этом случае исключается возможность повреждения кровельных материалов при установке поддерживающего каркаса, снижается трудоёмкость монтажа устройства и появляется возможность своевременного изменения «угла атаки солнечных лучей». И что самое главное - при нижнем размещении будет намного проще поддерживать чистоту поверхности солнечной панели. А это является залогом того, что установка будет работать в полную силу.

Монтаж солнечной панели на крыше вызвана скорее нехваткой места, чем необходимостью или удобством эксплуатации

Что понадобится в процессе работы

Приступая к изготовлению самодельной солнечной панели, следует запастись:

  • фотоэлементами;
  • многожильным медным проводом или специальными шинами для соединения солнечных ячеек;
  • припоем;
  • диодами Шоттки, рассчитанными на токоотдачу одного фотоэлемента;
  • качественным антибликовым стеклом или плексигласом;
  • рейками и фанерой для изготовления каркаса;
  • силиконовым герметиком;
  • метизами;
  • краской и защитным составом для обработки деревянных поверхностей.

В работе понадобится самый простой инструмент, который всегда есть под рукой у домовитого хозяина - паяльник, стеклорез, пила, отвёртка, малярная кисть и др.

Инструкция по изготовлению

Для изготовления первой солнечной батареи лучше всего использовать фотоэлементы с уже припаянными выводами - в этом случае уменьшается риск повреждения ячеек при сборке. Тем не менее, если вы имеете навыки обращения с паяльником, то сможете немного сэкономить, купив солнечные элементы с нераспаянными контактами. Для постройки панели, которую мы рассматривали в приведённых выше примерах, понадобится 120 пластин. Используя соотношение сторон примерно 1:1, потребуется укладка 15 рядов фотоэлементов по 8 штук в каждом. При этом мы сможем каждые два «столбика» соединить последовательно, а четыре таких блока подключить параллельно. Таким образом можно избежать путаницы в проводах и получить ровный, красивый монтаж.

Схема электрических соединений домашней солнечной электростанции

Корпус

Сборку солнечной панели всегда следует начинать с изготовления корпуса. Для этого нам понадобятся алюминиевые уголки или деревянные рейки высотой не более 25 мм - в этом случае они не будут бросать тень на крайние ряды фотоэлементов. Исходя из размеров наших кремниевых ячеек размером 3х6 дюймов (7.62х15.24 см), размер рамы должен составлять не менее 125х 125 см. Если вы решите использовать другое соотношение сторон (например, 1:2), то каркас можно дополнительно усилить поперечиной из рейки такого же сечения.

Обратную сторону корпуса следует зашить панелью из фанеры или OSB, а в нижнем торце рамы просверлить вентиляционные отверстия. Соединение внутренней полости панели с атмосферой понадобится для выравнивания влажности - в противном случае не избежать запотевания стёкол.

Для изготовления корпуса солнечной панели подойдут самые простые материалы - деревянные рейки и фанера

По внешнему размеру каркаса вырезают панель из плексигласа или высококачественного стекла высокой степени прозрачности. В крайнем случае можно использовать оконное стекло толщиной до 4 мм. Для его крепления подготавливают уголковые кронштейны, в которых выполняют сверления для крепления к раме. При использовании оргстекла можно проделать отверстия непосредственно в прозрачной панели - это упростит сборку.

Чтобы защитить деревянный корпус солнечной батареи от влаги и грибка, его пропитывают антибактериальным составом и окрашивают масляной краской.

Для удобства сборки электрической части, из ДВП или другого диэлектрического материала вырезают подложку по внутреннему размеру рамы. В дальнейшем на ней будет выполняться монтаж фотоэлементов.

Пайка пластин

Перед тем как начать пайку, следует «прикинуть» укладку фотоэлементов. В нашем случае понадобится 4 массива ячеек по 30 пластин в каждом, причём располагаться в корпусе они будут пятнадцатью рядами. С такой длинной цепочкой будет неудобно работать, к тому же возрастает риск повреждения хрупких стеклянных пластин. Рационально будет соединять по 5 деталей, а окончательную сборку выполнять после того, как фотоэлементы будут смонтированы на подложке.

Для удобства, фотоэлементы можно смонтировать на непроводящей подложкке из текстолита, оргстекла или ДВП

После соединения каждой цепочки, следует проверить её работоспособность. Для этого каждую сборку помещают под настольную лампу. Записывая значения силы тока и напряжения, можно не только контролировать работоспособность модулей, но и сравнивать их параметры.

Для пайки используем маломощный паяльник (максимум 40 Вт) и хороший, легкоплавкий припой. Его в небольшом количестве наносим на выводные части пластин, после чего, соблюдая полярность подключения, соединяем детали друг с другом.

При пайке фотоэлементов следует проявлять максимальную аккуратность, поскольку эти детали отличаются повышенной хрупкостью

Собрав отдельные цепочки, разворачиваем их тыльной частью к подложке и при помощи силиконового герметика приклеиваем к поверхности. Каждый 15-вольтовый блок фотоэлементов снабжаем диодом Шоттки. Этот прибор позволяет току протекать только в одном направлении, поэтому не позволит аккумуляторам разряжаться при низком напряжении солнечной панели.

Окончательное соединение отдельных цепочек фотоэлементов выполняют согласно представленной выше электрической схеме. В этих целях можно использовать специальную шину или многожильный медный провод.

Навесные элементы солнечной батареи следует закрепить термоклеем или саморезами

Сборка панели

Подложки с расположенными на них фотоэлементами укладывают в корпус и крепят саморезами. Если рама усиливалась поперечиной, то в ней выполняют несколько сверлений под монтажные провода. Кабель, который выводят наружу, надёжно фиксируют на раме и припаивают к выводам сборки. Чтобы не путаться с полярностью, лучше всего использовать двухцветные провода, подключая красный вывод к «плюсу» батареи, а синий - к её «минусу». По верхнему контуру рамы наносят сплошной слой силиконового герметика, поверх которого укладывают стекло. После окончательной фиксации сборку солнечной батареи считают законченной.

После того, как на герметик будет установлено защитное стекло, панель можно транспортировать к месту установки

Установка и подключение солнечной батареи к потребителям

В силу ряда причин самодельная солнечная панель является достаточно хрупким устройством, поэтому требует обустройства надёжного поддерживающего каркаса. Идеальным вариантом будет конструкция, которая позволит ориентировать источник бесплатной электроэнергии в обеих плоскостях, однако сложность такой системы чаще всего является весомым доводом в пользу простой наклонной системы. Она представляет собой подвижную раму, которую можно выставить под любым углом к светилу. Один из вариантов каркаса, сбитого из деревянного бруса, представлен ниже. Вы же можете использовать для его изготовления металлические уголки, трубы, шины и т. д. – всё, что есть под руками.

Чертёж каркаса солнечной батареи

Чтобы подключить солнечную батарею к аккумуляторам, понадобится контроллер заряда. Этот прибор будет следить за степенью заряда и разряда батарей, контролировать токоотдачу и выполнять переключение на сетевое питание при значительной просадке напряжения. Прибор необходимой мощности и требуемого функционала можно купить в тех же торговых точках, где продаются фотоэлементы. Что касается питания бытовых потребителей, то для этого потребуется трансформировать низковольтное напряжение в 220 В. С этим успешно справляется другое устройство - инвертор. Надо сказать, что отечественная промышленность выпускает надёжные приборы с хорошими ТТХ, поэтому преобразователь можно купить на месте - бонусом в этом случае будет «настоящая» гарантия.

Одной солнечной батареи для полноценного электроснабжения дома будет недостаточно - понадобятся еще и аккумуляторы, контроллер заряда и инвертор

В продаже можно найти инверторы одной и той же мощности, отличающиеся по цене в разы. Подобный разброс объясняется «чистотой» выходного напряжения, что является необходимым условием питания отдельных электрических устройств. Преобразователи с так называемой чистой синусоидой имеют усложнённую конструкцию, и как следствие, более высокую стоимость.

Видео: изготовление солнечной панели своими руками

Постройка домашней солнечной электростанции является нетривиальной задачей и требует как финансовых и временных затрат, так и минимальных знаний основ электротехники. Приступая к сборке солнечной панели, следует соблюдать максимальное внимание и аккуратность - только в этом случае можно рассчитывать на удачное решение вопроса. Напоследок хотелось бы напомнить о том, что загрязнение стекла является одним из факторов падения производительности. Не забывайте своевременно чистить поверхность солнечной панели, иначе она не сможет работать на полную мощность.

В продолжение темы:
Модемы

Здравствуйте, уважаемые друзья. Сегодня речь пойдёт про конечные заставки YouTube. Функция появилась, относительно, недавно и её можно использовать в своих видео.Если помните,...