Виды сигналов: аналоговый, цифровой, дискретный. Цифровые и аналоговые АТС: в чем отличия? Чем отличается аналоговая связь от цифровой

Деление станций на аналоговые и цифровые производится по типу коммутации. Телефонная связь, действующая на основе преобразования речи (голоса) в аналоговый электрический сигнал и передачи его по коммутируемому каналу связи (аналоговая телефония), долгое время была единственным средством передачи речевых сообщений на расстояние. Возможность дискретизации (по времени) и квантования (по уровню) параметров аналогового электрического сигнала (амплитуды, частоты или фазы) позволили преобразовывать аналоговый сигнал в цифровой (дискретный), обрабатывать его программными методами и передавать по цифровым телекоммуникационным сетям.

Для передачи аналогового речевого сигнала между двумя абонентами в сети ТфОП (телефонные сети общего пользования) предоставляется так называемый стандартный канал тональной частоты (ТЧ), полоса пропускания которого составляет 3100 Гц. В системе цифровой телефонии над аналоговым электрическим сигналом выполняются операции дискретизации (по времени), квантования (по уровню), кодирования и устранения избыточности (сжатия), после чего сформированный таким образом поток данных направляется принимающему абоненту и по «прибытию» в пункт назначения подвергается обратным процедурам.

Преобразование речевого сигнала осуществляется по соответствующему протоколу в зависимости от того, по какой сети он передается. В настоящее время наиболее эффективная передача потока любых дискретных (цифровых) сигналов, в том числе и несущих речь (голос), обеспечивается цифровыми электрическими сетями, в которых реализованы пакетные технологии: IP (Internet Protocol), ATM (Asynchronous Transfer Mode) или FR (Frame Relay).

Говорят, что концепция передачи голоса при помощи цифровых технологий зародилась в 1993 году в Университете штата Иллинойс (США). Во время очередного полета челнока Endeavor в апреле 1994 года NASA передало на Землю его изображение и звук с помощью компьютерной программы. Полученный сигнал поступал в Интернет, и любой желающий мог услышать голоса астронавтов. В феврале 1995 года израильская компания VocalTec предложила первую версию программы Internet Phone, разработанную для владельцев мультимедийных PC, работающих под Windows. Потом была создана частная сеть серверов Internet Phone. И уже тысячи людей загрузили программу Internet Phone с домашней страницы VocalTec и начали общаться.

Естественно, что другие компании очень быстро оценили перспективы, которые открывала возможность разговаривать, находясь в разных полушариях и не оплачивая при этом международные звонки. Такие перспективы не могли остаться незамеченными, и уже в 1995 году на рынок обрушился поток продукции, предназначенной для передачи голоса через Сеть.

Сегодня существует несколько стандартизированных способов передачи информации, получившие наибольшее распространение на рынке услуг цифровой телефонии: это стандарты ISDN, VoIP, DECT, GSM и некоторые другие. Попробуем вкратце рассказать об особенностях каждого из них.

Итак, что же такое ISDN?

Аббревиатура ISDN расшифровывается какIntegrated Services Digital Network - цифровая сеть с интеграцией услуг. Это современное поколение всемирной телефонной сети, обладающей возможностью переносить любой тип информации, включая быструю и корректную передачу данных (в том числе и голоса) высокого качества от пользователя к пользователю.

Основное достоинство сети ISDN заключается в том, что Вы можете подключить к одному сетевому окончанию несколько цифровых или аналоговых аппаратов (телефон, модем, факс и пр.), и каждый может иметь свой городской номер.

Обычный телефон подключается к телефонной станции парой проводников. При этом по одной паре можно вести только один телефонный разговор. При этом в трубке могут быть слышны шум, помехи, радио, посторонние голоса - недостатки аналоговой телефонной связи, которая "собирает" все помехи на своем пути. В случае использования ISDN абоненту устанавливается сетевое окончание, а звук, преобразующийся специальным декодером в цифровой формат, передается по специально отведенному для этого (также полностью цифровому) каналу принимающему абоненту, обеспечивая при этом максимальную слышимость без помех и искажений.

Основой ISDN является сеть, построенная на базе цифровых телефонных каналов (предусматривающая также возможность передача данных с коммутацией пакетов) со скоростью передачи данных 64 кбит/с. Услуги ISDN базируются на двух стандартах:

    Базовый доступ (Basic Rate Interface (BRI)) - два B-канала 64 кбит/с и один D-канал 16 кбит/с

    Первичный доступ (Primary Rate Interface (PRI)) - 30 B-каналов 64 кбит/с и один D-канал 64 кбит/с

Обычно пропускная способность BRI составляет 144 Кбит/с. При работе с PRI полностью используется вся магистраль цифровой связи (DS1), что дает пропускную способность 2 Мбит/c. Высокие скорости, предлагаемые ISDN, делают ее идеальной для большого числа современных услуг связи, включая высокоскоростную передачу данных, разделение экранов, видеоконференции, передачу больших файлов для мультимедиа, настольную видеотелефонию и доступ в Интернет.

Собственно говоря, технология ISDN – это ни что иное, как одна из разновидностей «компьютерной телефонии», или, как ее еще называют CTI-телефония (Computer Telephony Integration - компьютерно-телефонная интеграция).

Одной из причин возникновения решений CTI послужило появление требований по обеспечению сотрудников компаний дополнительными телефонными сервисами, которые либо не поддерживались существующей корпоративной телефонной станцией, либо стоимость приобретения и внедрения решения от производителя этой станции была несопоставима с достигаемыми удобствами.

Первыми ласточками сервисных CTI-приложений стали системы электронных секретарей (autoattended) и автоматических интерактивных голосовых приветствий (меню), корпоративная голосовая почта, автоответчик и системы записи переговоров. Для добавления сервиса того или иного CTI-приложения к существующей телефонной станции компании подключался компьютер. В нем была установлена специализированная плата (вначале на шине ISA, затем на шине PCI), которая соединялась с телефонной станцией по стандартному телефонному интерфейсу. Программное обеспечение компьютера, запущенное под определенной операционной системой (MS Windows, Linux или Unix), взаимодействовало с телефонной станцией через программный интерфейс (API) специализированной платы и тем самым обеспечивало реализацию дополнительного сервиса корпоративной телефонии. Практически одновременно с этим был разработан стандарт программного интерфейса для компьютерно-телефонной интеграции – TAPI (Telephony API)

Для традиционных телефонных систем CTI-интеграция осуществляется так: некоторая специализированная компьютерная плата подключена к телефонной станции и транслирует (переводит) телефонные сигналы, состояние телефонной линии и его изменения в «программный» вид: сообщения, события, переменные, константы. Передача телефонной составляющей происходит по телефонной сети, а программной составляющей – по сети передачи данных, IP-сети.

А как выглядит процесс интеграции в IP-телефонии ?

В первую очередь необходимо заметить, что с появлением IP-телефонии изменилось само восприятие телефонной станции (Private Branch eXchange - PBX). IP PBX является ничем иным как еще одним сетевым сервисом IP-сети, и, как большинство сервисов IP-сети, функционирует в соответствии с принципами клиент-серверной технологии, т. е. предполагает наличие сервисной и клиентской частей. Так, например, сервис электронный почты в IP-сети имеет сервисную часть – почтовый сервер и клиентскую часть –программу пользователя (например Microsoft Outlook). Аналогично устроен и сервис IP-телефонии: сервисная часть – сервер IP PBX и клиентская часть – IP-телефон («железный» или программный) используют для передачи голоса единую коммуникационную среду – IP-сеть.

Что это дает пользователю?

Преимущества IP-телефонии очевидны. Среди них – богатый функционал, возможность существенно улучшить взаимодействие сотрудников и одновременно упростить обслуживание системы.

Кроме того, IP-коммуникации развиваются по открытому принципу вследствие стандартизации протоколов и глобального проникновения IP. Благодаря принципу открытости в системе IP-телефонии возможно расширение предоставляемых услуг, интеграция с существующими и планируемыми сервисами.

IP-телефония позволяет построить единую централизованную систему управления для всех подсистем с разграничением прав доступа и эксплуатировать подсистемы в региональных подразделениях силами местного персонала.

Модульность системы IP-коммуникаций, ее открытость, интеграция и независимость компонентов (в отличие от традиционной телефонии) дают дополнительные возможности для построения по-настоящему отказоустойчивых систем, а также систем с распределенной территориальной структурой.

Беспроводные системы связи стандарта DECT:

Стандарт беспроводного доступа DECT (Digital Enhanced Cordless Telecommunications) является наиболее популярной системой мобильной связи в корпоративной сети, самым дешевым и простым при монтаже вариантом. Она позволяет организовать беспроводную связь по всей территории предприятия, что так необходимо «мобильным» пользователям (например, охране предприятия или начальникам цехов, отделов).

Основное преимущество DECT-систем заключается в том, что с приобретением подобного телефона вы практически бесплатно получаете мини-АТС на несколько внутренних номеров. Дело в том, что к единожды купленной DECT-базе можно приобрести дополнительные телефонные трубки, каждая из которых получает свой внутренний номер. С любой трубки вы без особого труда сможете звонить на другие трубки, подключенные к этой же базе, передавать входящие и внутренние звонки и даже осуществлять своеобразный «роуминг» - прописывать свою трубку на другой базе. Радиус приема этого вида связи – 50 метров в помещение и 300 метров на открытом пространстве.

Для организации мобильной связи в сетях общего пользования используются сети сотовой связи стандартов GSM и CDMA, территориальная эффективность которых практически не ограничена. Это стандарты соответственно второго и третьего поколения сотовой связи. В чем же различия?

Каждую минуту с любой базовой станцией сотовой сети пытаются связаться сразу несколько телефонов, находящихся в ее окрестностях. Поэтому станции должны обеспечивать «множественный доступ», то есть одновременную работу без взаимных помех сразу нескольких телефонов.

В сотовых системах первого поколения (стандарты NMT, AMPS, N-AMPS и др.) множественный доступ реализуется частотным методом – FDMA (Frequency Division Multiple Access): базовая станция имеет несколько приемников и передатчиков, каждый из которых работает на своей частоте, а радиотелефон настраивается на любую частоту, используемую в сотовой системе. Связавшись с базовой станцией на специальном служебном канале, телефон получает указание, какие частоты он может занять, и перестраивается на них. Это не отличается от способа настройки той или иной радиоволны.

Однако число каналов, которые удается выделить на базовой станции, не очень велико, тем более что соседние станции сотовой сети должны иметь разные наборы частот, чтобы не создавать взаимных помех. В большинстве сотовых сетей второго поколения стал применяться частотно-временной метод разделения каналов – TDMA (Time Division Multiple Access). В таких системах (а это сети стандартов GSM, D-AMPS и др.) тоже используются различные частоты, но только каждый такой канал выделяется телефону не на все время связи, а только на небольшие промежутки времени. Остальные такие же интервалы поочередно используются другими телефонами. Полезная информация в таких системах (в том числе и речевые сигналы) передается в «сжатом» виде и в цифровой форме.

Совместное использование каждого частотного канала несколькими телефонами позволяет обеспечить обслуживание большего числа абонентов, но частот все равно не хватает. Существенно улучшить это положение смогла технология CDMA, построенная по принципу кодового разделения сигналов.

Суть метода кодового разделения сигналов, примененного в CDMA, заключается в том, что все телефоны и базовые станции одновременно используют один и тот же (и при этом сразу весь) выделенный для сотовой сети диапазон частот. Для того чтобы эти широкополосные сигналы можно было различать между собой, каждый из них имеет специфическую кодовую «окраску», обеспечивающую его уверенное выделение на фоне других.

За последние пять лет технология использования CDMA была протестирована, стандартизирована, лицензирована и запущена в производство большинством поставщиков беспроводного оборудования и уже применяется во всем мире. В отличие от других методов доступа абонентов к сети, где энергия сигнала концентрируется на выбранных частотах или временных интервалах, сигналы CDMA распределены в непрерывном частотно-временном пространстве. Фактически этот метод манипулирует и частотой, и временем, и энергией.

Возникает вопрос: могут ли системы CDMA при таких возможностях «мирно» сосуществовать с сетями AMPS/D-AMPS и GSM?

Оказывается, могут. Российскими регулирующими органами разрешена работа сетей CDMA в полосе радиочастот 828 - 831 МГц (прием сигнала) и 873-876 МГц (передача сигнала), где и размещены два радиоканала CDMA шириной 1,23 МГц. В свою очередь, для стандарта GSM в России отведены частоты выше 900 МГц, поэтому рабочие диапазоны сетей CDMA и GSM никак не пересекаются.

Что хочется сказать в заключении:

Как показывает практика, современные пользователи все больше тяготеют к широкополосным сервисам (видеоконференции, высокоскоростная передача данных) и все чаще предпочитают мобильный терминал обычному проводному. Если еще учесть тот факт, что число таких желающих в больших компаниях может легко перевалить за тысячу, то получим набор требований, удовлетворить которые способна только мощная современная цифровая станция (УПАТС).

Сегодня на рынке представлено множество решений от различных производителей, обладающих возможностями как традиционных АТС, коммутаторов или маршрутизаторов для сетей передачи данных (в том числе и по технологиям ISDN и VoIP), так и свойствами беспроводных базовых станций.

Цифровые УПАТС сегодня в большей степени, чем другие системы, соответствует указанным критериям: имеют возможности коммутации широкополосных каналов, пакетной коммутации, просто интегрируются с компьютерными системами (CTI) и позволяют организовывать беспроводные микросоты внутри корпораций (DECT).

Какой из указанных типов связи лучше? Решайте сами.

    Связь в технике передача информации (сигналов) на расстояние. Содержание 1 История 2 Типы связи 3 Сигнал … Википедия

    Передача непрерывных сообщений (например, звука или речи) Словарь бизнес терминов. Академик.ру. 2001 … Словарь бизнес-терминов

    аналоговая связь - — Тематики защита информации EN analog communication …

    Аналоговая интегральная (микро)схема (АИС, АИМС) ИМС, входные и выходные сигналы которой изменяются по закону непрерывной функции (т.е. являются аналоговыми сигналами). Содержание 1 История 2 Назначение … Википедия

    - (АВМ) вычислительная машина, в которой каждому мгновенному значению переменной величины, участвующей в исходных соотношениях, ставится в соответствие мгновенное значение другой (машинной) величины, часто отличающейся от исходной… … Большая советская энциклопедия

    обычная аналоговая телефонная связь - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN plain old telephone servicePOTS … Справочник технического переводчика

    Передача фотоснимков, рисунков, карт и рукописных или напечатанных текстов электрическими сигналами. (Впервые ее осуществил итальянский физик Дж.Казелли в 1855.) Свет, отраженный от изображения, преобразуется в электрические сигналы, которые… … Энциклопедия Кольера

    Связь в технике передача информации (сигналов) на расстояние. Содержание 1 История 2 Типы связи 3 Сигнал 4 Линия связи … Википедия

    Электросвязь разновидность связи, способ передачи информации с помощью электромагнитных сигналов, например, по проводам, волоконно оптическому кабелю или по радио. Первое упоминание о передаче информации на дальние расстояния описано в… … Википедия

    ГОСТ 17657-79: Передача данных. Термины и определения - Терминология ГОСТ 17657 79: Передача данных. Термины и определения оригинал документа: 78. n кратная ошибка в цифровом сигнале данных n кратная ошибка Е. n fold error Группа из и ошибок в цифровом сигнале данных, при которой ошибочные единичные… … Словарь-справочник терминов нормативно-технической документации

Аналоговые АТС могут преобразовывать речь в импульсный или непрерывный электрический сигнал. Основными возможностями такого оборудования являются: внутренняя связь, тональный импульсный набор, удержание звонка, звонка, набор последнего номера, конференц-связь, прием звонка другим абонентом, дневной/ночной , пейджинг. Аналоговые АТС достаточно надежны и просты в эксплуатации. Подобное оборудование можно использовать, если к функциональным возможностям сети не предъявляются высокие требования, а количество абонентов составляет не более 50. Установка такой системы в небольшой компании будет оптимальным решением. В сравнении с цифровыми АТС, аналоговое оборудование стоит дешевле. Недостатком аналоговых АТС является довольно маленькое количество функций, конфигурация системы является жесткой и изменению.

В отличие от аналоговых цифровые АТС могут преобразовывать речь при помощи метода импульсно-кодовой модуляции в потоки двоичных импульсов. Они имеют значительное количество сервисных функций, к ним можно подключать и цифровые, и аналоговые телефонные линии. Существует возможность подключения аппаратов через двухпроводные обычные линии. Цифровые автоматические телефонные станции, в отличие от аналоговых, стоят дороже. Они отличаются гибкостью системы и плана программирования, имеют иные требования к технологии производства. Наиболее эффективным является применение подобных АТС при количестве абонентов больше 50.

Особенности цифровых АТС

К достоинствам цифровых АТС относятся высокая надежность, возможность гибкого программирования (например, LCR), наличие микросотовой связи. Они обеспечивают отличное качество речи, имеют возможность создавать центр обработки вызовов. Использование цифровой АТС позволяет подключать системники (до двух аппаратов), развивать видеотелефонию, проводить интеграцию с компьютерной сетью. С ее помощью можно работать с цифровыми линиями BRI и PRI, а так же с Интернет-телефонией.

Функциями цифровых АТС являются следующие:
- автосекретарь - тональный донабор абонента, который помогает соединить звонящего с внутренним абонентом;
- голосовая - в случае, если абонент занят, позвонивший может оставить голосовое сообщение;
- DECT- связь - позволяет сотрудникам перемещаться по офису с DECT-трубкой;
- IP-телефония - система связи, которая передает речевой сигнал по другим IP-сетям или по сети Интернет;
- CTI (компьютерно-телефонная интеграция) - позволяет интегрировать мини-АТС с программным обеспечением;
- конференц-связь - обеспечивает общение нескольких участников одновременно;
- удаленное администрирование цифровых мини-АТС - позволяет настраивать и программировать АТС на расстоянии;
- внешнее громкое оповещение (педжинг), которое позволяет найти нужного сотрудника или уведомить всех работников о каком-либо событии.

Подобные документы

    Основные характеристики непрерывных аналоговых сигналов. Свойства и передача аналогового сигнала. Применение аналоговых сигналов в телефонии, радиовещании, телевидении. Отличия детерминированных, периодических, синусоидальных и прямоугольных сигналов.

    презентация, добавлен 17.12.2016

    Прямой цифровой синтез, его схема, область применения, значение. Параметры цифро-аналоговых преобразователей: статистические (разрешающая способность, погрешность полной шкалы и смещения нуля, нелинейность) и динамические. Шумы и причины их появления.

    реферат, добавлен 14.02.2009

    Понятие, сущность и характеристика особенностей аналоговых коммутаторов. Статические характеристики аналоговых коммутаторов. Особенности электронных коммутаторов и их описание. Особенности коммутатора на полевых транзисторах и аналоговых мультиплексоров.

    реферат, добавлен 14.02.2009

    Анализ истории развития средств связи. Характеристика средств персональной радиосвязи. Изучение принципов работы систем персонального вызова и сотовой подвижной связи. Анализ функционирования аналоговых систем и цифровых стандартов сотовой связи.

    учебное пособие, добавлен 18.09.2017

    Разновидности линий связи, понятие канала связи и классификация каналов передачи данных. Диапазоны частот, передаваемых основными типами направляющих систем, основные характеристики аналоговых сигналов. Развитие и использование цифровых систем передачи.

    презентация, добавлен 19.10.2014

    Исследование схем аналоговых и дискретно-аналоговых перестраиваемых интеграторов, особенности их построения и принципы работы. Определение уникальности каждой схемы, как по схемотехническому исполнению, так и по способу перестройки, проведение анализа.

    статья, добавлен 28.07.2017

    Классификация и описание видов телефонного соединения. Основы общегосударственной системы автоматизированной телефонной связи. Схема построения, структура разных видов абонентской сети городских аналоговых телефонных станций. Способы их связи между собой.

    презентация, добавлен 09.03.2013

    Исследование аналоговых и цифровых систем передачи. Распространение сигналов по линиям связи в виде непрерывно меняющихся синусоидальных электромагнитных волн, которые характеризуются частотой, фазой и амплитудой. Изучение канала двустороннего действия.

    презентация, добавлен 03.01.2018

    Качественные показатели и характеристики аналоговых электронных устройств. Построение усилительного каскада на электронной лампе и полевых транзисторах. Обратная связь в аналоговых устройствах. Усилительные каскады с различными видами обратной связи.

    курс лекций, добавлен 23.05.2013

    Способы формирования выходного напряжения для цифро-аналоговых преобразователей. Параллельный цифро-аналоговый преобразователь на переключаемых конденсаторах и преобразователь с суммированием напряжений, их особенности и интерфейсы преобразователей.

Линии связи могут быть аналоговыми или цифровыми.

Данные, изначально имеющие аналоговую, непрерывную форму, такие, как речь, фото и телевизионные изображения, телеметрическая информация, в последнее время все чаще передаются по каналам связи в дискретном виде, т. е. в виде последовательности "нулей" и "единиц". Для преобразования непрерывного сигнала в дискретную форму производится дискретная модуляция. называемая также кодированием.

Применяются два типа кодирования данных. Первый -- на основе непрерывного синусоидального несущего сигнала — называется аналоговой модуляцией, или просто модуляцией. Кодирование осуществляется за счет изменения параметров аналогового сигнала. Второй тип кодирования называется цифровым кодированием и осуществляется на основе последовательности прямоугольных импульсов. Эти способы кодирования различаются шириной спектра передаваемого сигнала и сложностью аппаратуры для их реализации.

Современные телекоммуникационные системы и сети явились синтезом развития двух исходно независимых сетей:

  • сетей электросвязи (телефонной, телеграфной, телетайпной и радиосвязи)
  • и вычислительных сетей.

Логика развития систем связи требовала применения цифровых систем передачи данных, а также применения вычислительных средств для решения задач маршрутизации, управления трафиком, сигнализации. Достигнутое в результате этих двух встречных движений совмещение техники связи с вычислительной техникой позволило усовершенствовать технологию обслуживания телефонной клиентуры и повысить эффективность отрасли связи, а также полнее использовать ресурсы вычислительных центров, вычислительных систем и сетей путем перераспределения их ресурсов и распараллеливания между ними задач и информационных потоков.

Многие сети общего пользования традиционных операторов (фиксированная телефонная связь) являются в основном аналоговыми. Сети связи, создаваемые новыми операторами — цифровые, что обеспечивает внедрение современных служб и гарантирует перспективность этих сетей.

В то же время существующие аналоговые сети активно используются для передачи информации как в аналоговой форме (телефония, радиотелефония, радиовещание и телевидение), так и для передачи дискретных (цифровых) данных. Носителем информации в телекоммуникационных каналах являются электрические сигналы (непрерывные, называемые аналоговыми, и дискретные или цифровые) и электромагнитные колебания — волны.
Для передачи по цифровым каналам аналогового сообщения в виде непрерывной последовательности (телеметрические, метеорологические данные, данные систем контроля и управления) она предварительно оцифровывается. Частота оцифровки обычно равна порядка 8 кГц, через каждые 125 мкс значение величины аналогового сигнала отображается 8-разрядным двоичным кодом. Таким образом, скорость передачи данных составляет 64 кбит/с. Объединение нескольких таких базовых цифровых каналов в один (мультиплексирование) позволяет создавать более скоростные каналы: простейший мультиплексированный канал обеспечивает скорость передачи 128 кбит/с, более сложные каналы, например, мультиплексирующие 32 базовых канала, обеспечивают пропускную способность 2048 Мбит/с. С помощью цифровых каналов подключаются к магистралям также и офисные цифровые АТС.

Цифровые абонентские каналы в режиме коммутации каналов используются в наиболее распространенной цифровой сети с интеграцией услуг ISDN(Integrated Services Digital Network). По популярности сеть ISDN уступает лишь аналоговой телефонной сети. Адресация в ISDN организована так же, как и в телефонной сети, так как сеть создавалась для объединения существующих телефонных сетей с появляющимися сетями передачи данных. Поэтому сети ISDN позволяют объединять разнообразные виды связи (видео-, аудиопередачу данных, тексты, компьютерные данные и т. п.) со скоростями 64 кбит/с, 128 кбит/с, 2 Мбит/с и 155 Мбит/с на широкополосных каналах связи.

Заметим, что названием ISDN принято именовать и сеть, использующую технологию ISDN, и протокол, применяющий эту технологию.

Активно развиваются и другие типы цифровых систем, из которых следует отметить модификации технологии цифровых абонентских линий DSL (Digital Subscriber Line). HDSL (High Bit Rate DSL) - высокоскоростной вариант абонентской линии ISDN.

Конкуренцию ISDN и HDSL могут составить цифровые магистрали с синхронно-цифровой иерархией SDN (Synchronous Digital Hierarchy). В системе SDN имеется иерархия скоростей передачи данных. В магистралях SDN применяются оптоволоконные линии связи и частично радиолинии.

В продолжение темы:
Модемы

Всем привет! Сегодня отличный день и я решил рассказать о бесплатной программе для раскрутки сайта или блога. Ранее мы уже говорили о — сейчас это доступно каждому. Каждый...

Новые статьи
/
Популярные