Особенности измерения мощности. Мощность в чем измеряется. Мощность — физическая величина, формула мощности Какова единица измерения мощности

Общие сведения. Измерение мощности весьма распространено в практике электрических и электронных измерений на постоянном и переменном токе во всем освоенном диапазоне частот - вплоть до миллиметровых и более коротких волн.

Особое значение имеет измерение мощности в диапазоне СВЧ, поскольку мощность является единственной характеристикой элект­рического режима соответствующего тракта, когда измерение тока и напряжения на СВЧ из-за большой погрешности практически не­возможно.

Мощность измеряется ваттметрами в пределах от долей микроватт до единиц - десятков гигаватт.

В зависимости от измеряемых мощностей приборы делятся на ватт­метры малой (<10 мВт), средней (10 мВт... 10 Вт) и большой (>10 Вт) мощности.

Основной единицей измерения мощности является ватт (Вт). Ис­пользуются также кратные и дольные единицы:

Гигаватт (1 ГВт = Вт);

Мегаватт (1 МВт = Вт);

Киловатт (1 кВт = Вт);

Милливатт (1 мВт = Вт);

Микроватт (1 мкВт = Вт).

Международные обозначения единиц измерения мощности приве­дены в Приложении 1.

Мощность может измеряться не только в абсолютных, но и в отно­сительных единицах - децибелах:

Для измерения мощности используют косвенные и прямой методы. В каталоговой классификации электронные ваттметры обозначаются следующим образом: Ml - образцовые, М2 - проходящей мощности» МЗ - поглощаемой мощности, М4 - мосты для измерителей мощно­сти, М5 - преобразователи (головки) ваттметров.

Электромеханические ваттметры классифицируются в соответ­ствии с единицами измерения мощности, указанными на их шкалах и лицевых панелях: W - ваттметры: kW - киловаттметры; mW - милливаттметры; W - микроваттметры.

Измерение мощности в цепях постоянного и переменного тока низких частот. Для измерения мощности в цепях постоянного и пере­менного тока промышленных частот используются чаше всего элект­ромеханические ваттметры электродинамической и ферродинамической систем.

В лабораторной практике применяются в основном ваттметры электродинамической системы 3, 4 и 5-го классов точности (0,1; 0,2; 0,5). В промышленности при технических измерениях применяют ваттметры ферродинамической системы 6, 7 и 8-го классов точности (1,0; 1,5 и 2,5).

Шкалы однопредельных ваттметром градуированы в значениях измеряемой величины (ваттах, киловаттах и т.д.). Многопредельные ваттметры имеют неградуированную шкалу. Перед использованием таких ваттметров при известных номинальном значении тока и по­минальном значении напряжения выбранного предела, а также количестве делений шкалы применяемого ваттметра необходимо определить его цену деления с (постоянную прибора) при по формуле


Зная цену деления для данного ваттметра в выбранном пределе, несложно произвести отсчет значения измеряемой мощности. Измеренное значение мощности будет составлять

где п - отсчет количества делений по шкале прибора.

Ваттметры электродинамической системы применяются для из­мерения мощности в цепях постоянного и переменного тока частотой до нескольких килогерц.

Ваттметры ферродинамической системы применяются для изме­рения мощности в цепях постоянного и переменного тока промышлен­ных частот.

На постоянном и переменном токе низких, средних и высоких ча­стот используются косвенные методы измерения мощности, т.е. напря­жения, сила тока и фазовые сдвиги определяются путем последующего вычисления мощности. Активная мощность двухфазного переменного тока в цепи с комплексной нагрузкой определяется но формуле

где U, I- среднеквадратичное значение напряжения и силы тока;

Фазовый сдвиг между силой тока и напряжением.

В цепи с чисто активной нагрузкой , когда = 0, = 1, мощ­ность переменного тока составляет

, (3.33)

мощность импульсного тока:

На практике обычно измеряется средняя мощность за период сле­довании импульсов:

(3-35)

где q - скважность: q = ;

Длительность импульсов;

Коэффициент формы импульсов 1;

Период следования импульсов.

Высокочастотные методы измерения мощности . Возможны два типовых метода измерения мощности (в зависимости от ее вида: по­глощаемая или проходящая).

Поглощаемая мощность - это мощность, потребляемая нагруз­кой. В этом случае нагрузка заменяется ее эквивалентом, а измеряе­мая мощность полностью рассеивается на этом эквиваленте нагрузки, и далее измеряется мощность теплового процесса. Нагрузка ваттметра полностью поглощает мощность, поэтому такие приборы называются ваттметрами поглощаемой мощности (рис. 3.16, а). Так как нагрузка полностью должна поглощать измеряемую мощность, то прибор может использоваться только при отключенном потребителе. Погрешность измерения будет тем меньше, чем более полно обеспечено согласование входного сопротивления ваттметра с выходным сопротивлением исследуемого источника или волновым сопротивлением линии передачи.

Рис. 3.16. Методы измерения ваттметрами поглощаемой (о) и проходящей мощности (б)

Проходящая мощность - это мощность, передаваемая генератором в реальную нагрузку. Приборы, ее измеряющие, называются ваттметрами проходящей мощности. Такие ваттметры потребляют незначительную долю мощности источника, а основная ее часть выделяется в реальной полезной нагрузке (рис. 3.16, б).

К ваттметрам проходящей мощности относятся приборы па преоб­разователях Холла, с поглощающей стенкой и другие приборы.

В диапазоне высоких и сверхвысоких частот косвенные методы из­мерения мощности не применяются, так как в разных сечениях линии передач значения силы тока и падения напряжения различны; кроме того, подключение измерительного прибора меняет режим работы измерительной цепи. Поэтому на СВЧ используются другие методы: 1 например, преобразования электромагнитной энергии в тепловую (ка­лориметрический метод), изменения сопротивления резистора (термисторный метод).

Калориметрический метод измерения мощности характеризуется высокой точностью. Этот метод используется во всем радиотехни­ческом диапазоне частот при измерении сравнительно больших мощ­ностей, когда имеет место потеря тепла. Калориметрический метод основан на преобразовании электрической энергии в тепловую, когда нагревается некоторая жидкость в калориметре ваттметра (рис. 3.17). Далее мощность оценивается путем определения по известной разности температур и известному объему жидкости, протекающей через калориметр:

, (3.36)

где - коэффициент используемой жидкости;

- объем нагретой жидкости.

Рис. 3.17. Устройство калориметрического ваттметра

Погрешность калориметрического метода составляет 1...7%.

Термисторный (болометрический) метод измерения мощности основан на использовании свойства терморезисторов изменять свое сопротивление под воздействием поглощаемой ими мощности элек­тромагнитных колебаний. В качестве терморезисторов используют термисторы и болометры.

Термистор представляет собой полупроводниковую пластину (или диск), заключенную в стеклянный баллон. Термисторы имеют отрица­тельный температурный коэффициент, т.е. с повышением температу­ры их сопротивление падает.

Болометр представляет собой тонкую пластину из слюды или стекла с нанесенным на нее слоем (пленкой) платины. Пленоч­ные болометры обладают очень высокой чувствительностью (до ... Вт). Болометры имеют положительный температурный коэффициент, т.е. с повышением температуры их сопротивление растет.

Чувствительность и надежность термисторов выше, чем боломет­ров, однако параметры болометров стабильнее, поэтому они применя­ются в образцовых ваттметрах (подгруппа M1).

Термисторный метод обеспечивает высокую чувствительность, поэтому его применяют для измерения малых и средних мощностей. Использование ответвителей и делительных устройств позволяет применять метод и для измерения больших мощностей. Погрешность термисторных ваттметров составляет 4... 10% и чаще всего зависит от степени согласованности нагрузки.

К основным метрологическим характеристикам ваттметров, кото­рые необходимо знать при выборе прибора, относятся следующие:

Тип прибора (поглощаемой или проходящей мощности);

Диапазон измерения мощности;

Частотный диапазон;

Допустимая погрешность измерений;

Коэффициент стоячей волны (КСВ) входа измерителя мощности или модуль коэффициента отражения.

Контрольные вопросы

1. Приведите правило включения амперметра в исследуемую цепь.

2. Каково назначение шунтов?

3. Как изменяется сопротивление амперметра с подключением шунта?

4. Как шунт подключается к амперметру?

5. Амперметры какой системы чаще используются при измерении силы постоянного тока?

6. Амперметры какой системы используются при измерении силы I переменного тока высоких частот?

7. Какие правила необходимо соблюдать при измерении силы тока высоких частот?

8. Приведите эквивалентную схему амперметра для измерения силы тока низких частот.

9. Приведите эквивалентную схему амперметра для измерения силы тока высоких частот.

10. Перечислите основные параметры амперметра.

11. Какое требование предъявляется к внутреннему сопротивлению амперметра?

12. Почему нельзя использовать электромеханический амперметр электродинамической системы при измерении силы переменного тока высоких частот?

13. Перечислите достоинства амперметров магнитоэлектрической системы.

14. Перечислите недостатки амперметров магнитоэлектрической системы.

15. Сколько шунтов содержит электромеханический амперметр с пятью пределами измерения?

16. В чем состоит принципиальное отличие вольтметра от амперметра?

17. Как вольтметр включается в цепь?

18. Каково назначение добавочных резисторов?

19. Что необходимо сделать для расширения диапазона измерения на­пряжения электромеханического вольтметра?

20. Перечислите достоинства и недостатки электромеханических вольтметров.

21. По каким признакам классифицируются электронные аналоговые вольтметры?

22. По каким структурным схемам строятся электронные аналоговые вольтметры?

23. Перечислите достоинства и недостатки электронных аналоговых вольтметров.

24. Почему вольтметры типа У - Д имеют высокую чувствитель­ность?

25. Почему вольтметры типа Д - У имеют широкий частотный диапа­зон?

26. Каковы преимущества электронных цифровых вольтметров по сравнению с электронными аналоговыми?

27. Зачем электронные аналоговые вольтметры имеют шкалу, градуированную в децибелах?

28. По каким основным метрологическим характеристикам выбирают вольтметр?

29. В каких единицах измеряется напряжение?

30. Что представляют собой мультиметры?

31. Какими приборами можно измерить мощность в цепях постоян­ного тока?

32. Какими приборами можно измерить мощность в цепях переменно­го синусоидального тока промышленных частот?

33. Каким методом можно измерить малую мощность в СВЧ - диапазоне?

34. Каким методом можно измерить большую мощность в СВЧ - диапазоне?

35. Что необходимо знать при определении мощности импульсного сигнала?

36. Определите мощность, выделенную на резисторе R = 1 кОм при протекании постоянного тока силой 5 мА.

37. Определите рассеиваемую резистором R - 2 кОм мощность, если через него протекает синусоидальный ток амплитудой 4 мА.

38. В чем состоит калориметрический метод измерения мощности?

39. В чем состоит термисторный метод измерения мощности?

40. Что такое болометр и где он используется?

41.Укажите достоинства термистора по сравнению с болометром.

42. Укажите недостатки термистора по сравнению с болометром.

43. Перечислить достоинства и недостатки электродинамических ваттметров.

44. К какой группе и подгруппе относятся ваттметры поглощаемой мощности?

45. Какую часть энергии потребляют ваттметры проходящей мощности?

Мощность является физическим показателем. Она определяет работу, производимую во временном отрезке и помогающую измерять энергетическое изменение. Благодаря единице измерения мощности тока легко определяется скоростное энергетическое течение энергии в любом пространственном промежутке.

Расчет и виды

Из-за прямой зависимости мощности от напряжения в сети и токовой нагрузки следует, что эта величина может появляться как от взаимодействия большого тока с малым напряжением, так и в результате возникновения значительного напряжения с малым током. Такой принцип применим для превращения в трансформаторах и при передаче электроэнергии на огромные расстояния.

Существует формула для расчета этого показателя. Она имеет вид P = A / t = I * U, где:

  • Р является показателем токовой мощности, измеряется в ваттах;
  • А - токовая работа на цепном участке, исчисляется джоулями;
  • t выступает временным промежутком, на протяжении которого совершалась токовая работа, определяется в секундах;
  • U является электронапряжением участка цепи, исчисляется Вольтами;
  • I - токовая сила, исчисляется в амперах.

Электрическая мощность может иметь активные и реактивные показатели. В первом случае происходит преобразование мощностной силы в иную энергию. Ее измеряют в ваттах, так как она способствует преобразованию вольта и ампера.

Реактивный показатель мощности способствует возникновению самоиндукционного явления. Такое преобразование частично возвращает энергетические потоки обратно в сеть, из-за чего происходит смещение токовых значений и напряжения с отрицательным воздействием на электросеть.

Определение активного и реактивного показателя

Активная мощностная сила вычисляется путем определения общего значения однофазной цепи в синусоидальном токе за нужный временной промежуток. Формула расчета представлена в виде выражения Р = U * I * cos φ, где:

  • U и I выступают в качестве среднеквадратичного токового значения и напряжения;
  • cos φ является углом межфазного сдвига между этими двумя величинами.

Благодаря мощностной активности электроэнергия превращается в другие энергетические виды: тепловую и электромагнитную энергии. Любая электросеть с током синусоидального или несинусоидального направления определяет активность цепного участка суммированием мощностей каждого отдельного цепного промежутка. Электромощность трехфазного цепного участка определяется суммой каждой фазной мощности.

Аналогичным показателем активной мощностной силы считается величина мощности прохождения, которая рассчитывается путем разницы между ее падением и отражением.

Реактивный показатель измеряется в вольт-амперах. Он является величиной, применяемой для определения электротехнических нагрузок, создаваемых электромагнитными полями внутри цепи переменного тока. Единица измерения мощности электрического тока вычисляется умножением среднеквадратичного значения напряжения в сети U на переменный ток I и угол фазного синуса между этими величинами. Формула расчета выглядит следующим образом: Q = U * I * sin.

Если токовая нагрузка меньше напряжения, тогда фазное смещение носит положительное значение, если наоборот - отрицательное.

Величина измерения

Основной электротехнической единицей является мощность. Для того чтобы определить, в чем измеряется мощность электрического тока, нужно изучить основные характеристики этой величины. По законам физики ее измеряют в ваттах. В условиях производства и в быту величина переводится в киловатты. Вычисления крупных мощностных масштабов требуют перевода в мегаватты. Такой подход практикуется на электростанциях для получения электрической энергии. Работа исчисляется в джоулях. Величина определяется следующими соотношениями:

Потребительская мощностная сила обозначается на самом электроприборе или в паспорте к нему. Определив этот параметр, можно получить значения таких показателей, как напряжение и электрический ток. Используемые показатели указывают, в чем измеряется электрическая мощность, они могут выступать в виде ваттметров и варметров. Реактивная сила показателя мощности определяется фазометром, вольтметром и амперметром. Государственным эталоном того, в чем измеряется мощность тока, считается частотный диапазон от 40 до 2500 Гц.

Примеры вычислений

Для расчета тока чайника при электромощности 2 КВт используется формула I = P / U = (2 * 1000) / 220 = 9 А. Для запитывания прибора в электросеть не используется длина разъема в 6 А. Приведенный пример применим только тогда, когда полностью совпадает фазное и токовое напряжение. По такой формуле рассчитывается показатель всех бытовых приборов.

Если цепь является индуктивной или имеет большую емкость, то рассчитывать мощностную единицу тока необходимо, используя другие подходы. К примеру, мощность в двигателе с переменным током определяется с помощью формулы Р = I * U * cos.

При подключении прибора к трехфазной сети, где напряжение будет составлять 380 В, для определения показателя суммируются мощности каждой фазы в отдельности.

В качестве примера можно рассмотреть котел из трех фаз мощностной вместимостью 3 кВт, каждая из которых потребляет 1 кВт. Ток на фазе рассчитывается по формуле I = P / U * cos φ = (1 * 1000) / 220 = 4,5 А.

На любом приборе обозначается показатель электромощности. Передача большого мощностного объема, применяемая в производстве, осуществляется по линиям с высоким напряжением. Энергия преобразовывается с помощью подстанций в электроток и подается для использования в электросети.

Благодаря несложным расчетам определяется мощностная величина. Зная ее значение, можно сделать правильный подбор напряжения для полноценной работы приборов бытового и промышленного предназначения. Такой подход поможет избежать перегорания электроприборов и обезопасить электросети от перепадов напряжения.

Все мы ежедневно сталкиваемся с электроприборами, кажется, без них наша жизнь останавливается. И у каждого из них в технической инструкции указана мощность. Сегодня мы разберемся что же это такое, узнаем виды и способы расчета.

Электроприборы, подключаемые к электросети работают в цепи переменного тока, поэтому мы будем рассматривать мощность именно в этих условиях. Однако, сначала, дадим общее определение понятию.

Мощность -- физическая величина, отражающая скорость преобразования или передачи электрической энергии.

В более узком смысле, говорят, что электрическая мощность – это отношение работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Если перефразировать данное определение менее научно, то получается, что мощность – это некое количество энергии, которое расходуется потребителем за определенный промежуток времени. Самый простой пример – это обычная лампа накаливания. Скорость, с которой лампочка превращает потребляемую электроэнергию в тепло и свет, и будет ее мощностью. Соответственно, чем выше изначально этот показатель у лампочки, тем больше она будет потреблять энергии, и тем больше отдаст света.

Поскольку в данном случае происходит не только процесс преобразования электроэнергии в некоторую другую (световую, тепловую и т.д. ), но и процесс колебания электрического и магнитного поля, появляется сдвиг фазы между силой тока и напряжением, и это следует учитывать при дальнейших расчетах.

При расчете мощности в цепи переменного тока принято выделять активную, реактивную и полную составляющие.

Понятие активной мощности

Активная “полезная” мощность -- это та часть мощности, которая характеризует непосредственно процесс преобразования электрической энергии в некую другую энергию. Обозначается латинской буквой P и измеряется в (Вт ).

Рассчитывается по формуле: P = U⋅I⋅cosφ,

где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, cos φ – косинус угла сдвига фазы между напряжением и током.

ВАЖНО! Описанная ранее формула подходит для расчета цепей с , однако, мощные агрегаты обычно используют сеть с напряжением 380В. В таком случае выражение следует умножить на корень из трех или 1.73

Понятие реактивной мощности

Реактивная “вредная” мощность -- это мощность, которая образуется в процессе работы электроприборов с индуктивной или емкостной нагрузкой, и отражает происходящие электромагнитные колебания. Проще говоря, это энергия, которая переходит от источника питания к потребителю, а потом возвращается обратно в сеть.

Использовать в дело данную составляющую естественно нельзя, мало того, она во многом вредит сети питания, потому обычно его пытаются компенсировать.

Обозначается эта величина латинской буквой Q.

ЗАПОМНИТЕ! Реактивная мощность измеряется не в привычных ваттах (Вт ), а в вольт-амперах реактивных (Вар ).

Рассчитывается по формуле:

Q = U⋅I⋅sinφ ,

где U и I – среднеквадратичное значение напряжения и силы тока цепи соответственно, sinφ – синус угла сдвига фазы между напряжением и током.

ВАЖНО! При расчете данная величина может быть как положительной, так и отрицательной – в зависимости от движения фазы.

Емкостные и индуктивные нагрузки

Главным отличием реактивной (емкостной и индуктивной ) нагрузки – наличие, собственно, емкости и индуктивности, которые имеют свойство запасать энергию и позже отдавать ее в сеть.

Индуктивная нагрузка преобразует энергию электрического тока сначала в магнитное поле (в течение половины полупериода ), а далее преобразует энергию магнитного поля в электрический ток и передает в сеть. Примером могут служить асинхронные двигатели, выпрямители, трансформаторы, электромагниты.

ВАЖНО! При работе индуктивной нагрузки кривая тока всегда отстает от кривой напряжения на половину полупериода.

Емкостная нагрузка преобразует энергию электрического тока в электрическое поле, а затем преобразует энергию полученного поля обратно в электрический ток. Оба процесса опять же протекают в течение половины полупериода каждый. Примерами являются конденсаторы, батареи, синхронные двигатели.

ВАЖНО! Во время работы емкостной нагрузки кривая тока опережает кривую напряжения на половину полупериода.

Коэффициент мощности cosφ

Коэффициент мощности cosφ (читается косинус фи )– это скалярная физическая величина, отражающая эффективность потребления электрической энергии. Проще говоря, коэффициент cosφ показывает наличие реактивной части и величину получаемой активной части относительно всей мощности.

Коэффициент cosφ находится через отношение активной электрической мощности к полной электрической мощности.

ОБРАТИТЕ ВНИМАНИЕ! При более точном расчете следует учитывать нелинейные искажения синусоиды, однако, в обычных расчетах ими пренебрегают.

Значение данного коэффициента может изменяться от 0 до 1 (если расчет ведется в процентах, то от 0% до 100% ). Из расчетной формулы не сложно понять, что, чем больше его значение, тем больше активная составляющая, а значит лучше показатели прибора.

Понятие полной мощности. Треугольник мощностей

Полная мощность – это геометрически вычисляемая величина, равная корню из суммы квадратов активной и реактивной мощностей соответственно. Обозначается латинской буквой S.

S = U⋅I

ВАЖНО! Полная мощность измеряется в вольт-амперах (ВА ).

Треугольник мощностей – это удобное представление всех ранее описанных вычислений и соотношений между активной, реактивной и полной мощностей.

Катеты отражают реактивную и активную составляющие, гипотенуза – полную мощность. Согласно законам геометрии, косинус угла φ равен отношению активной и полной составляющих, то есть он является коэффициентом мощности.


Как найти активную, реактивную и полную мощности. Пример расчета

Все расчеты строятся на указанных ранее формулах и треугольнике мощностей. Давайте рассмотрим задачу, наиболее часто встречающуюся на практике.

Обычно на электроприборах указана активная мощность и значение коэффициента cosφ. Имея эти данные несложно рассчитать реактивную и полную составляющие.

Для этого разделим активную мощность на коэффициент cosφ и получим произведение тока и напряжения. Это и будет полной мощностью.

Как измеряют cosφ на практике

Значение коэффициента cosφ обычно указано на бирках электроприборов, однако, если необходимо измерить его на практике пользуются специализированным прибором – фазометром . Также с этой задачей легко справится цифровой ваттметр.

Если полученный коэффициент cosφ достаточно низок, то его можно компенсировать практически. Осуществляется это в основном путем включения в цепь дополнительных приборов.

  1. Если необходимо скорректировать реактивную составляющую, то следует включить в цепь реактивный элемент, действующий противоположно уже функционирующему прибору. Для компенсации работы асинхронного двигателя, для примера индуктивной нагрузки, в параллель включается конденсатор. Для компенсации синхронного двигателя подключается электромагнит.
  2. Если необходимо скорректировать проблемы нелинейности в схему вводят пассивный корректор коэффициента cosφ, к примеру, это может быть дроссель с высокой индуктивностью, подключаемый последовательно с нагрузкой.

Мощность – это один из важнейших показателей электроприборов, поэтому знать какой она бывает и как рассчитывается, полезно не только школьникам и людям, специализирующимся в области техники, но и каждому из нас.

Момщность - физическая величина, равная в общем случае скорости изменения, преобразования, передачи или потребления энергии системы. В более узком смысле мощность равна отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Различают среднюю мощность за промежуток времени

и мгновенную мощность в данный момент времени:

Интеграл от мгновенной мощности за промежуток времени равен полной переданной энергии за это время:

Единицы измерения. В Международной системе единиц (СИ) единицей измерения мощности является ватт, равный одному джоулю, делённому на секунду. механическая работа мощность электрическая

Другой распространённой, но ныне устаревшей единицей измерения мощности, является лошадиная сила. В своих рекомендациях Международная организация законодательной метрологии (МОЗМ) относит лошадиную силу к числу единиц измерения, "которые должны быть изъяты из обращения как можно скорее там, где они используются в настоящее время, и которые не должны вводиться, если они не используются"

Соотношения между единицами мощности (см. приложение 9).

Мощность в механике . Если на движущееся тело действует сила, то эта сила совершает работу. Мощность в этом случае равна скалярному произведению вектора силы на вектор скорости, с которой движется тело:

где F - сила, v - скорость, - угол между вектором скорости и силы.

Частный случай мощности при вращательном движении:

M - момент силы, - угловая скорость, - число пи, n - частота вращения (число оборотов в минуту, об/мин.).

Электрическая мощность

Механическая мощность. Мощность характеризует быстроту совершения работы.

Мощность (N) - физическая величина, равная отношению работы A к промежутку времени t, в течение которого совершена эта работа.

Мощность показывает, какая работа совершается за единицу времени.

В Международной системе (СИ) единица мощности называется Ватт (Вт) в честь английскогоизобретателя Джеймса Ватта (Уатта), построившего первую паровую машину.

[N]= Вт = Дж / c

  • 1 Вт = 1 Дж / 1с
  • 1 Ватт равен мощности силы, совершающей работу в 1 Дж за 1 секунду или, когда груз массой 100г поднимают на высоту 1м за 1 секунду.

Сам Джеймс Уатт (1736-1819) пользовался другой единицей мощности - лошадиной силой (1 л.с.), которую он ввел с целью возможности сравнения работоспособности паровой машины и лошади.

1л.с. = 735 Вт.

Однако, мощность одной средней лошади - около 1/2 л.с., хотя лошади бывают разные.

"Живые двигатели" кратковременно могут повышать свою мощность в несколько раз.

Лошадь может доводить свою мощность при беге и прыжках до десятикратной и более величины.

Делая прыжок на высоту в 1м, лошадь весом 500кг развивает мощность равную 5 000 Вт = 6,8 л.с.

Считается, что в среднем мощность человека при спокойной ходьбе равна приблизительно 0,1л.с. т.е 70-90Вт.

При беге, прыжках человек может развивать мощность во много раз большую.

Оказывается, самым мощным источником механической энергии является огнестрельное оружие!

С помощью пушки можно бросить ядро массой 900кг со скоростью 500м/с, развивая за 0,01 секунды около 110 000 000 Дж работы. Эта работа равнозначна работе по подъему 75 т груза на вершину пирамиды Хеопса (высота 150 м).

Мощность выстрела пушки будет составлять 11 000 000 000Вт = 15 000 000 л.с.

Сила напряжения мышц человека приблизительно равна силе тяжести, действующей на него.

эта формула справедлива для равномерного движения с постоянной скоростью и в случае переменного движения для средней скорости.

Из этих формул видно, что при постоянной мощности двигателя скорость движения обратно пропорциональна силе тяги и наоборот.

На этом основан принцип действия коробки скоростей (коробки перемены передач) различных транспортных средств.

Электрическая мощность . Электримческая мощность - физическая величина, характеризующая скорость передачи или преобразования электрической энергии. При изучении сетей переменного тока, помимо мгновенной мощности, соответствующей общефизическому определению, вводятся также понятия активной мощности, равной среднему за период значению мгновенной, реактивной мощности, которая соответствует энергии, циркулирующей без диссипации от источника к потребителю и обратно, и полной мощности, вычисляемой как произведение действующих значений тока и напряжения без учёта сдвига фаз.

U - это работа, выполняемая при перемещении одного кулона, а ток I - количество кулонов, проходящих за 1 сек. Поэтому произведение тока на напряжение показывает полную работу, выполненную за 1 сек, то есть электрическую мощность или мощность электрического тока.

Анализируя приведённую формулу, можно сделать очень простой вывод: поскольку электрическая мощность "P" в одинаковой степени зависит от тока "I" и от напряжения "U", то, следовательно, одну и ту же электрическую мощность можно получить либо при большом токе и малом напряжении, или же, наоборот, при большом напряжении и малом токе (Это используется при передачи электроэнергии на удалённые расстояния от электростанций к местам потребления, путём трансформаторного преобразования на повышающих и понижающих электроподстанциях).

Активная электрическая мощность (это мощность, которая безвозвратно преобразуется в другие виды энергии - тепловую, световую, механическую и т.д.) имеет свою единицу измерения - Вт (Ватт). Она равна произведению 1 вольта на 1 ампер. В быту и на производстве мощность удобней измерять в кВт (киловаттах, 1 кВт = 1000 Вт). На электростанциях уже используются более крупные единицы - мВт (мегаватты, 1 мВт = 1000 кВт = 1 000 000 Вт).

Реактивная электрическая мощность - это величина, которая характеризует такой вид электрической нагрузки, что создаются в устройствах (электрооборудовании) колебаниями энергии (индуктивного и емкостного характера) электромагнитного поля. Для обычного переменного тока она равна произведению рабочего тока I и падению напряжения U на синус угла сдвига фаз между ними:

Q = U*I*sin(угла).

Реактивная мощность имеет свою единицу измерения под названием ВАр (вольт-ампер реактивный). Обозначается буквой "Q".

Удельная мощность . Удельная мощность - отношение мощности двигателя к его массе или др. параметру.

Удельная мощность автомобиля . Применительно к автомобилям удельной мощностью называют максимальную мощность мотора, отнесённую ко всей массе автомобиля. Мощность поршневого двигателя, делённая на литраж двигателя, называется литровой мощностью. Например, литровая мощность бензиновых моторов составляет 30…45 кВт/л, а у дизелей без турбонаддува - 10…15 кВт/л.

Увеличение удельной мощности мотора приводит, в конечном счёте, к сокращению расхода топлива, так как не нужно транспортировать тяжёлый мотор. Этого добиваются за счёт лёгких сплавов, совершенствования конструкции и форсирования (увеличения быстроходности и степени сжатия, применения турбонаддува и т. д.). Но эта зависимость соблюдается не всегда. В частности, более тяжёлые дизельные двигатели могут быть более экономичны, так как КПД современного дизеля с турбонаддувом доходит до 50 %

В литературе, используя этот термин, часто приводят обратную величину кг/л.с. или кг/квт.

Удельная мощность танков . Мощность, надёжность и другие параметры танковых двигателей постоянно росли и улучшались. Если на ранних моделях довольствовались фактически автомобильными моторами, то с ростом массы танков в 1920-х-1940-х гг. получили распространение адаптированные авиационные моторы, а позже и специально сконструированные танковые дизельные (многотопливные) двигатели. Для обеспечения приемлемых ходовых качеств танка его удельная мощность (отношение мощности двигателя к боевой массе танка) должна быть не менее 18-20 л. с. /т. Удельная мощность некоторых современных танков (см. приложение 10).

Активная мощность . Активная мощность - среднее за период значение мгновенной мощности переменного тока:

Активная мощность - это величина, которая характеризует процесс преобразования электроэнергии в какой-либо другой вид энергии. Другими словами, электрическая мощность, как бы, показывает скорость потребления электроэнергии. Это та мощность, за которую мы платим деньги, которую считает счетчик.

Активную мощность можно определить по такой формуле:

Мощностные характеристики нагрузки можно точно задать одним единственным параметром (активная мощность в Вт) только для случая постоянного тока, так как в цепи постоянного тока существует единственный тип сопротивления - активное сопротивление.

Мощностные характеристики нагрузки для случая переменного тока невозможно точно задать одним единственным параметром, так как в цепи переменного тока существует два разных типа сопротивления - активное и реактивное. Поэтому только два параметра: активная мощность и реактивная мощность точно характеризуют нагрузку.

Принцип действия активного и реактивного сопротивлений совершенно различный. Активное сопротивление - необратимо преобразует электрическую энергию в другие виды энергии (тепловую, световую и т.д.) - примеры: лампа накаливания, электронагреватель.

Реактивное сопротивление - попеременно накапливает энергию затем выдаёт её обратно в сеть - примеры: конденсатор, катушка индуктивности.

Активная мощность (рассеиваемая на активном сопротивлении) измеряется в ваттах, а реактивная мощность (циркулирующая через реактивное сопротивление) измеряется в варах; так же для характеристики мощности нагрузки используют ещё два параметра: полную мощность и коэффициент мощности. Все эти 4 параметра:

Активная мощность: обозначение P, единица измерения: Ватт.

Реактивная мощность: обозначение Q, единица измерения: ВАр (Вольт Ампер реактивный).

Полная мощность: обозначение S, единица измерения: ВА (Вольт Ампер).

Коэффициент мощности: обозначение k или cosФ, единица измерения: безразмерная величина.

Эти параметры связаны соотношениями:

S*S=P*P+Q*Q, cosФ=k=P/S.

Также cosФ называется коэффициентом мощности.

Поэтому в электротехнике для характеристики мощности задаются любые два из этих параметров так как остальные могут быть найдены из этих двух.

То же самое и с источниками питания. Их мощность (нагрузочная способность) характеризуется одним параметром для источников питания постоянного тока - активная мощность (Вт), и двумя параметрами для ист. питания переменного тока. Обычно этими двумя параметрами являются полная мощность (ВА) и активная (Вт).

Большинство офисной и бытовой техники, активные (реактивное сопротивление отсутствует или мало), поэтому их мощность указывается в Ваттах. В этом случае при расчёте нагрузки используется значение мощности ИБП в Ваттах. Если нагрузкой являются компьютеры с блоками питания (БП) без коррекции входного коэффициента мощности (APFC), лазерный принтер, холодильник, кондиционер, электромотор (например, погружной насос или мотор в составе станка), люминисцентные балластные лампы и др. - при расчёте используются все вых. данные ибп: кВА, кВт, перегрузочные характеристики и др.

Реактивная мощность. Реактивная мощность, способы и виды (средства) компенсации реактивной мощности.

Реактивная мощность - часть полной мощности, затрачиваемая на электромагнитные процессы в нагрузке, имеющей емкостную и индуктивную составляющие. Не выполняет полезной работы, вызывает дополнительный нагрев проводников и требует применения источника энергии повышенной мощности.

Реактивная мощность относится к техническим потерям в электросетях согласно Приказу Минпромэнерго РФ № 267 от 04.10.2005.

При нормальных рабочих условиях все потребители электрической энергии, чей режим сопровождается постоянным возникновением электромагнитных полей (электродвигатели, оборудование сварки, люминесцентные лампы и многое др.) нагружают сеть как активной, так и реактивной составляющими полной потребляемой мощности. Эта реактивная составляющая мощности (далее реактивная мощность) необходима для работы оборудования содержащего значительные индуктивности и в то же время может быть рассмотрена как нежелательная дополнительная нагрузка на сеть.

При значительном потреблении реактивной мощности напряжение в сети понижается. В дефицитных по активной мощности энергосистемах уровень напряжения, как правило, ниже номинального. Недостаточная для выполнения баланса активная мощность передается в такие системы из соседних энергосистем, в которых имеется избыток генерируемой мощности. Обычно энергосистемы дефицитные по активной мощности, дефицитны и по реактивной мощности. Однако недостающую реактивную мощность эффективнее не передавать из соседних энергосистем, а генерировать в компенсирующих устройствах, установленных в данной энергосистеме. В отличие от активной мощности реактивная мощность может генерироваться не только генераторами, но и компенсирующими устройствами - конденсаторами, синхронными компенсаторами или статическими источниками реактивной мощности, которые можно установить на подстанциях электрической сети.

Компенсация реактивной мощности , в настоящее время, является немаловажным фактором, позволяющим решить вопрос энергосбережения и снижения нагрузок на электросеть. По оценкам отечественных и ведущих зарубежных специалистов, доля энергоресурсов, и в частности электроэнергии занимает значительную величину в себестоимости продукции. Это достаточно веский аргумент, чтобы со всей серьезностью подойти к анализу и аудиту энергопотребления предприятия, выработке методики и поиску средств для компенсации реактивной мощности.

Компенсация реактивной мощности. Средства компенсации реактивной мощности. Индуктивной реактивной нагрузке, создаваемой электрическими потребителями, можно противодействовать с помощью ёмкостной нагрузки, подключая точно рассчитанный конденсатор. Это позволяет снизить реактивную мощность, потребляемую от сети и называется корректировкой коэффициента мощности или компенсацией реактивной мощности.

Преимущества использования конденсаторных установок как средства для компенсации реактивной мощности:

  • · малые удельные потери активной мощности (собственные потери современных низковольтных косинусных конденсаторов не превышают 0,5 Вт на 1000 ВАр);
  • · отсутствие вращающихся частей;
  • · простой монтаж и эксплуатация (не нужно фундамента);
  • · относительно невысокие капиталовложения;
  • · возможность подбора любой необходимой мощности компенсации;
  • · возможность установки и подключения в любой точке электросети;
  • · отсутствие шума во время работы;
  • · небольшие эксплуатационные затраты.

В зависимости от подключения конденсаторной установки возможны следующие виды компенсации:

  • 1. Индивидуальная или постоянная компенсация, при которой индуктивная реактивная мощность компенсируется непосредственно в месте её возникновения, что ведет к разгрузке подводящих проводов (для отдельных, работающих в продолжительном режиме потребителей с постоянной или относительно большой мощностью - асинхронные двигатели, трансформаторы, сварочные аппараты, разрядные лампы и т.д.).
  • 2. Групповая компенсация, в которой аналогично индивидуальной компенсации для нескольких одновременно работающих индуктивных потребителей подключается общий постоянный конденсатор (для находящихся вблизи друг от друга электродвигателей, групп разрядных ламп). Здесь также разгружается подводящая линия, но только до распределения на отдельных потребителей.
  • 3. Централизованная компенсация, при которой определенное число конденсаторов подключается к главному или групповому распределительному шкафу. Такую компенсацию применяют, обычно, в больших электрических системах с переменной нагрузкой. Управление такой конденсаторной установкой выполняет электронный регулятор - контроллер, который постоянно анализирует потребление реактивной мощности от сети. Такие регуляторы включают или отключают конденсаторы, с помощью которых компенсируется мгновенная реактивная мощность общей нагрузки и, таким образом, уменьшается суммарная мощность, потребляемая от сети.

Мощность - физическая величина, равная отношению проделанной работы к определенному промежутку времени.

Существует понятие средней мощности за определенный промежуток времени Δt . Средняя мощность высчитывается по этой формуле: N = ΔA / Δt , мгновенная мощность по следующей формуле: N = dA / dt . Эти формулы имеют довольно обобщенный вид, так как понятие мощности присутствует в нескольких ветках физики - механике и электрофизике. Хотя основные принципы расчета мощности остаются приблизительно такими же, как и в общей формуле.

Измеряется мощность в ваттах. Ватт - единица измерения мощности, равная джоулю, деленному на секунду. Кроме ватта, существуют и другие единицы измерения мощности: лошадиная сила, эрг в секунду, масса-сила-метр в секунду.

    • Одна метрическая лошадиная сила равна 735 ваттам, английская - 745 ватт.
    • Эрг - очень малая единица измерения, один эрг равен десять в минус седьмой степени ватт.
    • Один масса-сила-метр в секунду равен 9,81 ваттам.

Измерительные приборы

В основном измерительные приборы для измерения мощности используются в электрофизике, так как в механике, зная определенный набор параметров (скорость и силу), можно самостоятельно высчитать мощность. Но таким же способом и в электрофизике можно высчитывать мощность по параметрам, а на самом деле, в повседневной жизни мы просто не используем измерительных приборов для фиксации механической мощности. Так как чаще всего эти параметры для определенных механизмов и так обозначают. Что касаемо электроники, основным прибором является ваттметр, используемый в быту в устройстве обычного электросчетчика.

Ваттметры можно разделить на несколько видов по частотам:

    • Низкочастотные
    • Радиочастотные
    • Оптические

Ваттметры могут быть как аналоговыми, так и цифровыми. Низкочастотные (НЧ) имеют в своем составе две катушки индуктивности, бывают как цифровыми, так и аналоговыми, применяются в промышленности и быту в составе обычных электросчетчиков. Ваттметры радиочастотные делятся на две группы: поглощаемой мощности и проходящей. Разница состоит в способе подключения ваттметра в сеть, проходящие подключают параллельно сети, поглощаемые в конце сети, как дополнительную нагрузку. Оптические ваттметры служат для определения мощности световых потоков и лазерных лучей. Применяются в основном на каких-либо производствах и в лабораториях.

Мощность в механике

Мощность в механике напрямую зависит от силы и работы, которую эта сила выполняет. Работа же является величиной, характеризующей силу, приложенную к какому-либо телу, под действием которой тело проходит определенное расстояние. Мощность высчитывается по скалярному произведению вектора скорости на вектор силы: P = F * v = F * v * cos a (сила, умноженная на вектор скорости и на угол между вектором силы и скорости (косинус альфа)).

Так же можно посчитать мощность вращательного движения тела. P = M * w = π * M * n / 30 . Мощность равна (М) моменту силы, умноженному на (w) угловую скорость или пи (п), умноженному на момент силы (М) и (n) частоту вращения, деленных на 30.

Мощность в электрофизике

В электрофизике мощность характеризует скорость передачи или превращения электроэнергии. Различают такие виды мощности:

    • Мгновенная электрическая мощность. Так как мощность - это работа, проделанная за определенное время, а заряд движется по определенному участку проводника, имеем формулу: P(a-b) = A / Δt . А-В характеризует участок, через который проходит заряд. А - работа заряда или зарядов, Δt - время прохождения зарядом или зарядами участка (А-В). По этой же формуле высчитываются и другие значения мощности для разных ситуаций, когда нужно измерить мгновенную мощность на отрезке проводника.

    • Так же можно посчитать мощность постоянного потока: P = I * U = I^2 * R = U^2 / R .

    • Мощность переменного тока не поддается исчислению по формуле постоянного тока. В переменном токе выделяют три вида мощности:
      • Активная мощность (Р), которая равна P = U * I * cos f . Где U и I действующие параметры тока, а f (фи) угол сдвига между фазами. Данная формула приведена как пример для однофазного синусоидального тока.
      • Реактивная мощность (Q) характеризует нагрузки, создаваемые в устройствах колебаниями электрического однофазного синусоидального переменного тока. Q = U * I * sin f . Единица измерения - вольт-ампер реактивный (вар).
      • Полная мощность (S) равна корню квадратов активной и реактивной мощности. Измеряется в вольт-амперах.
      • Неактивная мощность - характеристика пассивной мощности присутствующей в цепях с переменным синусоидальным током. Равна квадратному корню суммы квадратов реактивной мощности и мощности гармоник. При отсутствии мощности высших гармоник равна модулю реактивной мощности.
В продолжение темы:
Smart TV

FlashTool - 5.1844.00.000 - программа FlashTool предназначена для работы с китайскими телефонами. Программа предоставляет возможность вычитывать и записывать фуллы в...

Новые статьи
/
Популярные