Приемные системы рлс. Передающие устройства рлс вс Структурная схема передающего устройства рлс

Современная война стремительна и быстротечна. Зачастую победителем в боевом столкновении выходит тот, кто первым сумеет обнаружить потенциальную угрозу и адекватно на нее среагировать. Уже более семидесяти лет для поиска противника на суше, море и в воздухе используется метод радиолокации, основанный на излучении радиоволн и регистрации их отражений от различных объектов. Устройства, посылающие и принимающие подобные сигналы, называются радиолокационными станциями (РЛС) или радарами.

Термин «радар» - это английская аббревиатура (radio detection and ranging), которая была запущена в оборот в 1941 году, но давно уже стала самостоятельным словом и вошла в большинство языков мира.

Изобретение радара – это, безусловно, знаковое событие. Современный мир трудно представить без радиолокационных станций. Их используют в авиации, в морских перевозках, с помощью РЛС предсказывается погода, выявляются нарушители правил дорожного движения, производится сканирование земной поверхности. Радиолокационные комплексы (РЛК) нашли свое применение в космической промышленности и в системах навигации.

Однако наиболее широкое применение радары нашли в военном деле. Следует сказать, что эта технология изначально создавалась для военных нужд и дошла до стадии практической реализации перед самым началом Второй мировой войны . Все крупнейшие страны-участницы этого конфликта активно (и не без результата) использовали радиолокационные станции для разведки и обнаружения судов и самолетов противника. Можно уверенно утверждать, что применение радаров решило исход нескольких знаковых сражений как в Европе, так и на Тихоокеанском театре боевых действий.

Сегодня РЛС используются для решения чрезвычайно широкого спектра военных задач, от отслеживания запуска межконтинентальных баллистических ракет до артиллерийской разведки. Каждый самолет, вертолет, военный корабль имеет собственный радиолокационный комплекс. Радары являются основой системы противовоздушной обороны. Новейший радиолокационный комплекс с фазированной антенной решеткой будет установлен на перспективный российский танк «Армата». Вообще же, многообразие современных радаров поражает. Это абсолютно разные устройства, которые отличаются размерами, характеристиками и назначением.

С уверенностью можно заявить, что сегодня Россия является одним из признанных мировых лидеров в области разработки и производства РЛС. Однако прежде чем говорить о тенденциях развития радиолокационных комплексов, следует сказать несколько слов о принципах работы радаров, а также об истории радиолокационных систем.

Как работает радиолокатор

Локацией называют способ (или процесс) определения месторасположения чего-либо. Соответственно, радиолокация – это метод обнаружения предмета или объекта в пространстве при помощи радиоволн, которые излучает и принимает устройство под название радиолокатор или РЛС.

Физический принцип работы первичного или пассивного радара довольно прост: он передает в пространство радиоволны, которые отражаются от окружающих предметов и возвращаются к нему в виде отраженных сигналов. Анализируя их, радар способен обнаружить объект в определенной точке пространства, а также показать его основные характеристики: скорость, высоту, размер. Любая РЛС – это сложное радиотехническое устройство, состоящее из многих компонентов.

В состав любого радара входит три основных элемента: передатчик сигнала, антенна и приёмник. Все радиолокационные станции можно разделить на две большие группы:

  • импульсные;
  • непрерывного действия.

Передатчик импульсной РЛС испускает электромагнитные волны в течение краткого промежутка времени (доли секунды), следующий сигнал посылается только после того, как первый импульс вернется обратно и попадет в приемник. Частота повторения импульса – одна из важнейших характеристик РЛС. Радиолокаторы низкой частоты посылают несколько сотен импульсов в минуту.

Антенна импульсного радара работает и на прием, и на передачу. После испускания сигнала передатчик отключается на время и включается приёмник. После его приема происходит обратный процесс.

Импульсные РЛС имеют как недостатки, так и преимущества. Они могут определять дальность сразу нескольких целей, подобный радар вполне может обходиться одной антенной, индикаторы подобных устройств отличаются простотой. Однако при этом сигнал, испускаемый подобным РЛС должен иметь довольно большую мощность. Также можно добавить, что все современные радары сопровождения выполнены по импульсной схеме.

В импульсных радиолокационных станциях в качестве источника сигнала обычно используют магнетроны, или лампы бегущей волны.

Антенна РЛС фокусирует электромагнитный сигнал и направляет его, улавливает отраженный импульс и передает его в приемник. Существуют радиолокаторы, в которых прием и передача сигнала производятся разными антеннами, причем они могут находиться друг от друга на значительном расстоянии. Антенна РЛС способна испускать электромагнитные волны по кругу или работать в определенном секторе. Луч радара может быть направлен по спирали или иметь форму конуса. Если нужно, РЛС может следить за движущейся целью, постоянно направляя на нее антенну с помощью специальных систем.

В функции приемника входит обработка полученной информации и передача ее на экран, с которого она считывается оператором.

Кроме импульсных РЛС, существуют и радары непрерывного действия, которые постоянно испускают электромагнитные волны. Такие радиолокационные станции в своей работе используют эффект Доплера. Он заключается в том, что частота электромагнитной волны, отраженной от объекта, который приближается к источнику сигнала, будет выше, чем от удаляющегося объекта. При этом частота испускаемого импульса остается неизменной. Радиолокаторы подобного типа не фиксируют неподвижные объекты, их приемник улавливает лишь волны с частотой выше или ниже испускаемой.

Типичным доплеровским радиолокатором является радар, который используют сотрудники дорожной полиции для определения скорости автомобилей.

Основной проблемой радаров непрерывного действия является невозможность с их помощью определять расстояние до объекта, зато при их работе не возникает помех от неподвижных предметов между РЛС и целью или за ней. Кроме того, доплеровские радары – это довольно простые устройства, которым для работы достаточно сигналов малой мощности. Также нужно отметить, что современные радиолокационные станции с непрерывным излучением имеют возможность определять расстояние до объекта. Для этого используется изменение частоты РЛС во время работы.

Одной из главных проблем в работе импульсных РЛС являются помехи, которые идут от неподвижных объектов — как правило, это земная поверхность, горы, холмы. При работе бортовых импульсных радаров самолетов все объекты, находящиеся ниже, «затеняются» сигналом, отраженным от земной поверхности. Если говорить о наземных или судовых радиолокационных комплексах, то для них эта проблема проявляется в обнаружении целей, летящих на малых высотах. Чтобы устранить подобные помехи используется все тот же эффект Доплера.

Кроме первичных РЛС, существуют и так называемые вторичные радиолокаторы, которые используются в авиации для опознания воздушных судов. В состав таких радиолокационных комплексов, кроме передатчика, антенны и приемного устройства, входит еще и самолетный ответчик. При облучении его электромагнитным сигналом ответчик выдает дополнительную информацию о высоте, маршруте, номере борта, его государственной принадлежности.

Также радиолокационные станции можно разделить по длине и частоте волны, на которой они работают. Например, для исследования поверхности Земли, а также для работы на значительных дистанциях используются волны 0,9-6 м (частота 50-330 МГц) и 0,3-1 м (частота 300-1000 МГц). Для управления воздушным движением применяется РЛС с длиной волны 7,5-15 см, а загоризонтные радары станций обнаружения ракетных пусков работают на волнах с длиной от 10 до 100 метров.

История радиолокации

Идея радиолокации возникла практически сразу после открытия радиоволн. В 1905 году сотрудник немецкой компании Siemens Кристиан Хюльсмейер создал устройство, которое с помощью радиоволн могло обнаружить крупные металлические объекты. Изобретатель предлагал устанавливать его на кораблях, чтобы они могли избегать столкновений в условиях плохой видимости. Однако судовые компании не заинтересовались новым прибором.

Проводились эксперименты с радиолокацией и в России. Еще в конце XIX века русский ученый Попов обнаружил, что металлические объекты препятствуют распространению радиоволн.

В начале 20-х годов американские инженеры Альберт Тейлор и Лeo Янг сумели с помощью радиоволн засечь проплывающее судно. Однако состояние радиотехнической промышленности того времени было таково, что создать промышленные образцы радиолокационных станций было затруднительно.

Первые радиолокационные станции, которые можно было использовать для решения практических задач, появились в Англии примерно в середине 30-х годов. Эти устройства были очень большими, устанавливать их можно было только на суше или на палубе больших кораблей. Только в 1937 году был создан прототип миниатюрной РЛС, которую можно было установить на самолет. К началу Второй мировой войны англичане имели развернутую цепь радиолокационных станций под названием Chain Home.

Занимались новым перспективным направлением и в Германии. Причем, нужно сказать, небезуспешно. Уже в 1935 году главнокомандующему германского флота Редеру был продемонстрирован действующий радиолокатор с электронно-лучевым дисплеем. Позже на его основе были созданы серийные образцы РЛС: Seetakt для военно-морских сил и Freya для ПВО. В 1940 году в немецкую армию стала поступать система радиолокационная управления огнем Würzburg.

Однако несмотря на очевидные достижения германских ученых и инженеров в области радиолокации, немецкая армия начала использовать радиолокаторы позже англичан. Гитлер и верхушка Рейха считали радары исключительно оборонительным оружием, которое не слишком нужно победоносной немецкой армии. Именно по этой причине к началу битвы за Британию у немцев было развернуто только восемь радиолокационных станции Freya, хотя по своим характеристикам они как минимум не уступали английским аналогам. В целом же можно сказать, что именно успешное использование радаров во многом определило исход битвы за Британию и последующее противостояние между Люфтваффе и ВВС союзников в небе Европы.

Позже немцы на основе системы Würzburg создали рубеж ПВО, который получил название «линии Каммхубера». Используя подразделения специального назначения, союзники сумели разгадать секреты работы немецких радаров, что позволило эффективно глушить их.

Несмотря на то, что англичане вступили в «радарную» гонку позже американцев и немцев, на финише они сумели обогнать их и подойти к началу Второй мировой войны с самой продвинутой системой радиолокационного обнаружения самолетов.

Уже в сентябре 1935 года англичане приступили к постройке сети радиолокационных станций, в состав которой перед войной уже входили двадцать РЛС. Она полностью перекрывала подлет к Британским островам со стороны европейского побережья. Летом 1940 года британскими инженерами был создан резонансный магнетрон, позже ставший основой бортовых радиолокационных станций, устанавливаемых на американских и британских самолетах.

Работы в области военной радиолокации велись и в Советском Союзе. Первые успешные эксперименты по обнаружению самолетов с помощью радиолокационных станций в СССР были проведены еще в середине 30-х годов. В 1939 году на вооружение РККА была принята первая РЛС РУС-1, а в 1940 году – РУС-2. Обе эти станции были запущены в серийное производство.

Вторая мировая война наглядно показала высокую эффективность использования радиолокационных станций. Поэтому после ее окончания разработка новых РЛС стала одним из приоритетных направлений развития военной техники. Бортовые радиолокаторы со временем получили все без исключения военные самолеты и корабли, РЛС стали основой для систем противовоздушной обороны.

В период Холодной войны у США и СССР появилось новое разрушительное оружие – межконтинентальные баллистические ракеты. Обнаружение запуска этих ракет стало вопросом жизни и смерти. Советский ученый Николай Кабанов предложил идею использования коротких радиоволн для обнаружения самолетов противника на больших расстояниях (до 3 тыс. км). Она была довольно проста: Кабанов выяснил, что радиоволны длиной 10-100 метров способны отражаться от ионосферы, и облучая цели на поверхности земли, возвращаться тем же путем к РЛС.

Позже на основе этой идеи были разработаны радиолокаторы загоризонтного обнаружения запуска баллистических ракет. Примером таких РЛС может служить «Дарьял» - радиолокационная станция, которая несколько десятилетий была основой советской системы предупреждения о ракетных пусках.

В настоящее время одним из самых перспективных направлений развития радиолокационной техники считается создание РЛС с фазированной антенной решеткой (ФАР). Подобные радары имеют не один, а сотни излучателей радиоволн, работой которых руководит мощный компьютер. Радиоволны, испускаемые разными источниками в ФАР, могут усиливать друг друга, если они совпадают по фазе, или же, наоборот, ослаблять.

Сигналу РЛС с фазированной решеткой можно придавать любую необходимую форму, его можно перемещать в пространстве без изменения положения самой антенны, работать с разными частотами излучения. РЛС с фазированной решеткой гораздо надежней и чувствительней, чем радиолокатор с обычной антенной. Однако у подобных радаров есть и недостатки: большой проблемой является охлаждение РЛС с ФАР, кроме того, они сложны в производстве и дорого стоят.

Новые радиолокационные станции с фазированной решеткой устанавливаются на истребители пятого поколения. Эта технология используется в американской системе раннего предупреждения о ракетном нападении. Радиолокационный комплекс с ФАР будет установлен на новейший российский танк «Армата». Следует отметить, что Россия является одним из мировых лидеров в разработке радиолокаторов с ФАР.

Если у вас возникли вопросы - оставляйте их в комментариях под статьей. Мы или наши посетители с радостью ответим на них

Прибор И – индикатор. Назначение:

Воспроизведение на экране первичной информации об окружающей обстановке, поступающей от аппаратуры РЛС.

Определение координат надводных объектов и решение навигационных задач графическим путём.

Синхронизация и управление режимами работы станции.

Формирование импульсов запуска передающего устройства.

Формирование импульсов запуска вспомогательных устройств.

Формирование импульсов сигнала курса для вспомогательных устройств.

Обеспечение автономного питания собственных блоков и устройств.

Устройство и принцип работы:

Прибор И состоит из следующих трактов и узлов:

Тракт временной синхронизации.

Тракт временной развёртки.

Тракт визира и меток дальности.

Тракт визира направления.

Тракт ввода информации.

Тракт режима истинного движения.

Цифровое табло дальности и направления.

Электронно-лучевая трубка и отклоняющие системы.

Принцип работы прибора И рассмотрим на его структурной схеме (рис. 1).

Тракт временной синхронизации имеет задающий генератор (3Г), который формирует задающие импульсы с частотой повторения 3000 имп/сек – для шкал дальности 1 и 2 мили; 1500 имп/сек – для шкал 4 и 8 миль; 750 имп/сек – для шкал 16 и 32 мили; 500 имп/сек для шкалы 64 мили. Задающие импульсы от 3Г поступают на выход прибора для запуска функционально связанных устройств (в приборе П -3); для запуска генератора пилообразного напряжения (в тракте временной синхронизации);

В свою очередь, из Прибора П –3 в тракт синхронизации прибора поступают импульсы вторичной синхронизации, благодаря которым осуществляется синхронизация начала развёртки по дальности и направлению с началом излучения зондирующих импульсов прибором А (антенной РЛС) и запускается тракт визира и меток дальности.

Тракт временной развёртки с помощью генератора развёртки формирует и вырабатывает пилообразное напряжение, которое, подаётся после ряда преобразований на отклоняющую систему относительного движения в электронно- лучевой трубке и в тракт визира направления.

Тракт визира и меток дальности предназначен для формирования подвижного визира дальности (ПВД), посредствам которого обеспечивается визирование объектов по дальности, а измерение дальности производится электронным цифровым счётчиком. Информация о дальности выводится на цифровое табло ЦТ–3.

Ротор вращающегося трансформатора генератора развёртки вращается синхронно и синфазно с антенной, что обеспечивает синхронность вращения развёртки и антенны, а также получение отметки начала развёртки в момент пересечения максимумом диаграммы направленности антенны диаметральной плоскости судна.

Тракт визира направления состоит из датчика угла, формирователей сигнала считывания и дешифровки, вращающегося трансформатора развёртки визира направления. Вырабатываемым в тракте визира направления угол поворота вращающегося трансформатора, сформированный в виде кодированного сигнала, после дешифровки поступает на цифровой индикатор–табло ЦТ-4.

Тракт ввода информации предназначен для ввода на ЭЛТ информации о дальности и о направлении на объект, а также отображения на ЭЛТ видеосигнала, поступающего из прибора П – 3.

Тракт режима истинного движения предназначен для ввода данных о скорости V с – от лага, курса К с от гирокомпаса, по которым производится выработка составляющих вектора скорости в масштабе по направлениям N - S и Е – W; для обеспечения перемещения отметки своего судна на экране ЭЛТ в соответствии с выбранным масштабом, а также трактом предусмотрен автоматический и ручной возврат отметки своего судна в исходную точку.

Прибор П-3 – приемопередатчик. Назначение:

Прибор П –3 (приёмопередатчик) предназначен для:

Формирования и генерирования зондирующих импульсов СВЧ;

Приема, усиления и преобразования в видеосигнал отражённых радиолокационных сигналов.

Обеспечения синхронной и синфазной работы по времени всех блоков и узлов приборов: И; П – 3; А.

Состав прибора:

· блок СВЧ – 3 (блок сверхвысокой частоты).

· блок МП (модулятор передатчика).

· блок ФМ (фильтр модулятора).

· блок АПЧ (блок автоматической подстройки частоты)

· блок УР (усилитель регулируемый)

· блок УГ (усилитель главный)

· блок НК – 3 (блок настройки и контроля)

· блок АСУ (блок автоматической стабилизации и управления)

· субблок ФС (формирователь синхроимпульсов)

· 4 выпрямительных устройства обеспечивающих питанием блоков и цепей прибора П – 3.

Работу прибора рассмотрим на его структурной схеме.


Тракт формирования сигналов стабилизации предназначен для формирования импульсов вторичной синхронизации, поступающих в прибор И а также для запуска через блок автоматической стабилизации управления, модулятора передатчика. С помощью этих синхроимпульсов обеспечивается синхронизация зондирующих импульсов с началом развёртки на ЭЛТ прибора И.

Тракт формирования зондирующих импульсов предназначен для выработки импульсов СВЧ и передачи их по волноводу в прибор А. Это происходит после формирования модулятором напряжения импульсной модуляции генератора СВЧ а также импульсов контроля и синхронизации сопрягаемых блоков и узлов.

Тракт формирования видеосигнала предназначен для преобразования с помощью гетеродина и смесителей отражённых импульсов СВЧ в импульсы промежуточной частоты, формирования и усиления видеосигнала который затем поступает в прибор И. Для передачи зондирующих импульсов в прибор А и отражённых импульсов в тракт формирования видеосигнала, используется общий волновод.

Тракт настройки контроля и питания предназначен для выработки питающих напряжений всех блоков и цепей прибора, а также для контроля работоспособности источников питания, функциональных блоков и узлов станции, магнетрона, гетеродина, разрядника и др.

Прибор А – антенное устройство. Назначение:

Прибор А предназначен для излучения и приёма импульсов СВЧ – энергии и выдачи данных курсового угла антенны и отметки курса на прибор И. Он представляет собой щелевую антенну рупорного типа.

Основные данные прибора А.

Ширина диаграммы направленности:

В горизонтальной плоскости – 0,7° ± 0,1

В вертикальной плоскости - 20° ± 0,1

Частота вращения антенны 19 ± 4 обор / мин.

Диапазоны рабочих температур от - 40° С до + 65°С

Габаритные размеры:

Длина – 833 мм

Ширина – 3427 мм

Высота – 554 мм

Вес – 104 кг.

Конструктивно, прибор выполнен в виде 2-х разъемных блоков;

блок ПА – поворотная часть антенны

блок АР – осуществляется: формирование СВЧ энергии в виде радиолуча требуемой формы; направленное излучения энергии в пространство и ее направленный приём после отражения от облучаемых объектов.

Работа прибора А.

В блоке ПА прибора установлен электродвигатель с редуктором. Электродвигатель питается от судовой сети и обеспечивает круговое вращение блока АР прибора А. Электродвигатель, через редуктор, вращает также, ротор вращающегося трансформатора с которого в прибор И поступает, через следящую систему, сигнал об угловом положении антенны относительно ДП судна (курсовой угол), а также сигнал отметки курса судна. В блоке ПА расположен, также, вращающийся СВЧ переход, предназначенный для соединения вращающегося излучателя (блок АР) с неподвижным волноводным трактом.

Блок АР, являющийся щелевой антенной, формирует направленный радиолуч требуемой формы. Радиолуч излучает в пространство СВЧ энергию и обеспечивает направленный приём отражённой от облучаемых объектов части этой СВЧ – энергии. Отражённый сигнал, через общий волновод, поступает в прибор П – 3, где после ряда преобразований превращается в видеосигнал.

В блоке ПА установлены, также, тепловой электронагреватель (ТЕН), предназначенный для предотвращения опасности обледенения подвижных частей прибора А и фильтр для устранения индустриальных радиопомех.

Прибор КУ – контакторное устройство. Назначение:

Прибор КУ (контакторное устройство) предназначен для подключения РЛС к бортовой сети, коммутации выходного напряжения машинного агрегата, защиты привода антенны от перегрузок и защиты РЛС при нарушении порядка её выключения, а также защиты станции при аварийном отключении бортовой сети.

Прибор осуществляет подачу напряжения переменного тока 220В частотой 400 Гц на приборы РЛС через 3 ÷ 6 секунд после включения машинного агрегата.

При аварийном отключении бортовой сети прибор отключает потребителей в течении 0,4 ÷ 0,5 с.

Прибор отключает привод антенны через 5 ÷ 20 с. при неправильном чередовании фаз, при обрыве одной из фаз и при повышении тока нагрузки привода антенны.

Преобразователь АЛЛ – 1,5м. Назначение:

Преобразователь предназначен для преобразования трёхфазного тока частотой 50 Гц в однофазный переменный ток напряжением 220 В частотой 427 Гц. Он представляет собой машинный агрегат, на валу которого расположен трёхфазный синхронный двигатель и однофазный синхронный генератор.

С помощью преобразователя обеспечивается местный и дистанционный пуск и остановка агрегата питания.

УПРАВЛЕНИЕ РАБОТОЙ РЛС.

Управление работой РЛС осуществляется с панели и пульта управления прибора И.

Органы управления разделяются на оперативные и вспомогательные .

С помощью оперативных органов управления:

Включается и выключается станция. (27)

Переключаются шкалы дальности. (14)

Измеряются расстояния до целей с помощью визира дальности. (15)

Определяются курсовые углы и пеленги целей с помощью электронного и механического визиров направления. (28), (29)

Отключается отметка курса. (7)

Управляют различимостью (усилением) радиолокационных сигналов и помехозащитой. (8, 9, 10, 11, 12, 13)

Регулируется яркость подсвета панели и шкал. (2)

С помощью вспомогательных органов управления:

Включается и выключается вращение антенны. (26)

Включается связь индикатора с лагом и гирокомпасом.

Согласовываются показания подвижной шкалы визира направлений. (29)

Регулируется яркость развёртки и отметки курса. (22, 23)

Отключается АПЧ и включается ручной режим подстройки частоты гетеродина. (27)

Совмещается центр вращения развёртки с геометрическим центром визира направления. (20)

Настраивается гетеродин прибора П –3.

Включается режим контроля общей работоспособности РЛС. (16, 17, 18, 19)

Отключается питание модулятора прибора П –3.

Устанавливается яркость свечения экрана ЭЛТ и фокусируется луч.

Осуществляется включение поворотного устройства антенны. (26)

Включение обогрева антенны осуществляется на приборе КУ

Расположение органов управления, на пульте и панели индикатора указано на рисунке.

Рис №3. Панель управления индикатором РЛС «Наяда - 5»:

1-«Подсвет шкал»; 2-«Подсвет панели»; 3-«Градусы»; 4-«Шкала - интервал»; 5-«Мили»; 6-«ПЗ»; 7-«Отметка курса»; 8-«Дождь»; 9-«Яркость ВН»; 10-«Яркость ВД»; 11-«Яркость МД»; 12-«Волны»; 13-«Усиление»; 14-«Переключатель шкал дальности»; 15-«Дальность»; 16-«Блоки»; 17-«Выпрямители»; 18-«Контроль»; 19-«Стрелочный индикатор»; 20-«Установка центра»; 21-«РПЧ-Откл.»; 22-«Яркость ОК»; 23-«Яркость развёртки»; 24-«Ложные сигналы»; 25-«Контроль РЛС»; 26-«Антенна – Откл.»; 27-«РЛС-Откл.»; 28-«Механический визир»; 29-«Направление»; 30-«Курс-Север-Север-ИД»; 31-«Сброс в центр»; 32-«Сброс»; 33-«Смещение центра»; 34-«Учет сноса»; 35-«Скорость вручную»

ОБСЛУЖИВАНИЕ РЛС.

Перед включением РЛС необходимо:

Произвести внешний осмотр и убедится в отсутствии внешних повреждений приборов и агрегата.

Установить органы управления в положение, указанные в таблице.

Наименование органа управления Положение органов управления перед включением индикатора
Тумблер «РЛС – Откл.» Регулятор «Дождь» Регулятор «Яркость ВН» Регулятор «Яркость ВД» Регулятор «Яркость МД» Регулятор «Волны» Регулятор «Усиление» Регулятор «Подсвет шкал» Регулятор «Яркость развёртки, ОК» Переключатель «Курс – Север – Север ИД» Кнопка «Сброс в центр» Регуляторы «Смещение центра» Регуляторы «Учет сноса: скорость, направление» Регулятор «Скорость вручную» Кнопка «Ложные сигналы» Тумблер «Гирокомпас – Откл.» Тумблер «Антенна – Откл.» «Откл.» Крайнее левое Среднее Среднее Среднее Крайнее левое Среднее Среднее В фиксированном на заводе «Курс» Включена Среднее 0 по оцифрованной шкале 0 по оцифрованной шкале Включена «Откл.» «Откл.»

Остальные ораны управления, могут оставаться в произвольном положении.

Включение станции.

Выключатель напряжения бортовой сети устанавливают в положение «Вкл» (запускается агрегат питания)

На индикаторе:

Выключатель «РЛС – откл.» устанавливают в положение РЛС

Тумблер «Антенна – откл.» устанавливают в положение Антенна.

Включают оперативную кнопку П – 3 (при этом должны осветится шкальный механизм и поясняющие надписи).

Через 1,5 ÷ 2,5 мин. на экране ЭЛТ должна появится вращающая развёртка, отметка курса, метки дальности и линия визира направления.

Через 4 минуты должна появится отметка зондирующего импульса и отметки объектов в зоне обзора РЛС.

С помощью соответствующих регуляторов, выбирают оптимальную яркость ВН; ВД; МД; и положение «Волны».

Приёмопередатчик включается с помощью кнопочного переключателя. (6)

Ориентация изображения относительно истинного меридиана (север) или относительно диаметральной плоскости судна (курс) в режиме относительного движения осуществляется переключателем 30, установкой его в положение «север» или «курс». Этим же переключателем, установкой его в положение «север - ИД» обеспечивается режим истинного движения в масштабе шкал 1; 2; 4; 8 миль.

Центр развёртки смещается в выбранную точку потенциометрами (33)

Начало (центр) развёртки возвращается в центр ЭЛТ кнопкой 31 и 32.

Данные скорости своего судна могут вводится вручную (35)

Поправка на снос за течение вводится потенциометром (35)

Для устранения ложных отметок из-за сверхрефакции предусмотрено изменение частоты зондирующих импульсов (24)

Ручкой резистора «подсвет панели» (1) регулируется яркость индикации: «сброс в центр»; «ложные сигналы»; «миль»; «градусы».

Ручкой резистора «подсвет шкал» регулируется яркость индикации «шкала - интервал».

Цифровая индикация измеряемого до цели расстояния и индикация направления осуществляется на цифровых табло ЦТ – 3 и ЦТ – 4 (3; 5)

Контроль работоспособности РЛС осуществляется встроенной системой, обеспечивающей контроль общей работоспособности и поиск неисправностей (16; 17; 18; 19;)

Убеждаются в возможности: управления визирами дальности ВД и направления ВН, а также выключения отметки курса и изменения масштаба, путём переключения шкал дальности.

Проверяют: совмещение начала развёртки с центром экрана (по двум взаимно перпендикулярным положениям визира направления на шкале 4 мили). Работоспособность схемы ориентации изображения (отключают гирокомпас, переключатель «курс – север – север ИД» устанавливают поочерёдно в положении «курс» и «север» убеждаясь, что отметка курса, при этом, изменяет своё положение). После чего, устанавливают тумблер в положение «гирокомпас» и убеждается в соответствии положения линии курса показаниям репитера ГК.

Проверяют смещение центра вращения развёртки в режиме ОД (рукоятку «сброс в центр» устанавливают в выключенное положение, рукояткой «смещение цента» плавно перемещают центр развёртки в лево и вправо на 2 / 3 радиуса ЭЛТ, всё это проделывают на 1; 2; 4; 8 мильных шкалах дальности при ориентации поочерёдно по «курсу» и «северу»).

Кнопкой «сброс в центр» снова совмещаю центр развёртки с центром «экрана ЭЛТ».

Проверяют индикатор на работу в режиме ИД для чего: устанавливают переключатель в режим «север - ИД» шкалу дальности на 1 милю, отключают лаг и гирокомпас, ручку «учёт сноса» в нулевые положение, вручную устанавливают произвольное значение скорости, с помощью кнопки «сброс в центр» убеждаются в том что начало развёртки на экране перемещается по курсу с установленной скоростью. Когда перемещение достигнет величины 2 / 3 радиуса ЭЛТ, центр развёртки должен автоматически возвратится в центр экрана. Возврат начала развёртки в исходную точку должен обеспечивается, также, вручную нажатием кнопки «сброс».

Ручками «учёт сноса» вводят произвольное значение поправок по курсу и скорости, и убеждаются, что при этом изменяются параметры перемещения начала развёртки на экране ЭЛТ.

Переключатель «курс – север – север ИД» устанавливают в положение «курс» или «север». При этом начало развёртки должно переместится в центр экрана и должен включится режим ОД. Тоже самое должно произойти при установке шкал дальности на значения 16; 32; 64 мили.

Проверяют ручное смещение начала развёртки в режиме ИД: выключают кнопку «сброс в центр», регуляторы «смещение центра» устанавливают в положение, обеспечивающее смещение начала развёртки на величину меньше 2 / 3 радиуса ЭЛТ, кнопку «сброс» нажимают, и убеждаются, что центр развёртки переместился в выбранную точку, и начал перемещаться в заданном направлении. Сместившись на 2 / 3 радиуса экрана, центр развёртки автоматически возвращаются в выбранную точку.

Контроль работоспособности станции осуществляется встроенной системой, обеспечивающей контроль и поиск неисправностей. Система состоит из элементов, входящих отдельными узлами в приборы и блока станции.

Работоспособность прибора П – 3 контролируется с помощью расположенного в нём блока НК – 3 который проверяет исправность источников питания и функциональных блоков и узлов.

Контроль работоспособности прибора И, поиск неисправного источника питания или функционального блока производится с помощью встроенного блока контроля, расположенного на панели управления прибора И.

ВЫКЛЮЧЕНИЕ СТАНЦИИ ПРОИЗВОДИТСЯ:

· Снятием питания тумблером «РЛС – откл.»

· Отключением напряжения бортовой сети (кнопка «стоп» пускателя)

· Отключением напряжения от элементов связи с лагом и гирокомпасом.

Всем добрый вечер:) Шарил по просторам интернета после посещения войсковой части с немалым количеством РЛС.
Очень заинтересовали сами РЛС.Думаю что не только меня,поэтому решил выложить данную статью:)

Радиолокационные станции П-15 и П-19


Радиолокационная станция П-15 дециметрового диапазона предназначена для обнаружения низколетящих целей. Принята на вооружение в 1955 году. Используется в составе радиолокационных постов радиотехнических формирований, батареях управления зенитных артиллерийских и ракетных формирований оперативного звена ПВО и на пунктах управления ПВО тактического звена.

Станция П-15 смонтирована на одном автомобиле вместе с антенной системой и развертывается в боевое положение за 10 мин. Агрегат питания транспортируется в прицепе.

В станции имеются три режима работы:
- амплитудный;
- амплитудный с накоплением;
- когерентно-импульсный.

РЛС П-19 предназначена для ведения разведки воздушных целей на малых и средних высотах, обнаружения целей, определения их текущих координат по азимуту и дальности опознавания, а также для передачи Радиолокационной информации на командные пункты и на сопрягаемые системы. Она представляет собой подвижную двухкоординатную радиолокационную станцию, размещенную на двух автомобилях.

На первом автомобиле размещается приемо-передающая аппаратура, аппаратура защиты от помех, индикаторная аппаратура, аппаратура передачи радиолокационной информации, имитации, связи и сопряжения с потребителями радиолокационной информации, функционального контроля и аппаратура наземного радиолокационного запросчика.

На втором автомобиле размещается антенно-поворотное устройство РЛС и агрегаты электропитания.

Сложные климатические условия и длительность эксплуатации радиолокационных станций П-15 и П-19 привели к тому, что к настоящему времени большая часть РЛС требует восстановления ресурса.

Единственным выходом из сложившейся ситуации считается модернизация старого парка РЛС на базе РЛС «Kacтa-2E1».

В предложениях по модернизации учитывалось следующее:

Сохранение в неприкосновенности основных систем РЛС (антенной системы, привода вращения антенны, СВЧ-тракта, системы электропитания, транспортных средств);

Возможность проведения модернизации в условиях эксплуатации с минимальными финансовыми затратами;

Возможность использования высвобождаемой аппаратуры РЛС П-19 для восстановления изделий, не подвергнутых модернизации.

В результате модернизации мобильная твердотельная маловысотная РЛС П-19 будет способна выполнять задачи контроля воздушного пространства, определения дальности и азимута воздушных объектов - самолетов, вертолетов, дистанционно-пилотируемых летательных аппаратов и крылатых ракет, в том числе действующих на малых и предельно малых высотах, на фоне интенсивных отражений от подстилающей поверхности, местных предметов и гидрометеообразований.

РЛС легко адаптируется к использованию в различных системах военного и гражданского назначения. Может применяться для информационного обеспечения систем ПВО, ВВС, систем береговой обороны, сил быстрого реагирования, систем управления движением самолетов гражданской авиации. Кроме традиционного применения в качестве средств обнаружения низколетящих целей в интересах вооруженных сил модернизированная РЛС может использоваться для контроля воздушного пространства с целью пресечения транспортировки оружия и наркотиков маловысотными, малоскоростными и малоразмерными летательными аппаратами в интересах специальных служб и подразделений полиции, занимающихся борьбой с наркобизнесом и контрабандой оружия.

Модернизированная радиолокационная станция П-18

Предназначена для обнаружения самолетов, определения их текущих координат и выдачи целеуказания. Является одной из самых массовых и дешевых станций метрового диапазона. Ресурс этих станций в значительной мере исчерпан, а их замена и ремонт затруднены в связи с отсутствием устаревшей к настоящему времени элементной базы.
Для продления срока службы РЛС П-18 и улучшения ряда тактико-технических характеристик осуществлена модернизация станции на основе монтажного комплекта, имеющего ресурс не менее 20-25 тыс. часов и срок службы 12 лет.
В антенную систему введены четыре дополнительных антенны для адаптивного подавления активных помех, устанавливаемые на двух отдельных мачтах, Цель модернизации - создание РЛС с ТТХ, удовлетворяющими современным требованиям, при сохранении облика базового изделия за счет:
- замены устаревшей элементной базы аппаратуры РЛС П-18 на современную;
- замены лампового передающего устройства твердотельным;
- введения системы обработки сигнала на цифровых процессорах;
- введения системы адаптивного подавления активных шумовых помех;
- введения систем вторичной обработки, контроля и диагностики аппаратуры, отображения информации и управления на базе универсальной ЭВМ;
- обеспечения сопряжения с современными АСУ.

В результате модернизации:
- уменьшен объем аппаратуры;
- увеличена надежность изделия;
- повышена помехозащищенность;
- улучшены точностные характеристики;
- улучшены эксплуатационные характеристики.
Монтажный комплект встраивается в аппаратную кабину РЛС вместо старой аппаратуры. Небольшие габариты монтажного комплекта позволяют проводить модернизацию изделий на позиции.

Радиолокационный комплекс П-40А


Дальномер 1РЛ128 «Броня»

Радиолокационный дальномер 1РЛ128 "Броня" является РЛС кругового обзора и совместно с радиолокационным высотомером 1РЛ132 образует трехкоординатный радиолокационный комплекс П-40А.
Дальномер 1РЛ128 предназначен для:
- обнаружения воздушных целей;
- определения наклонной дальности и азимута воздушных целей;
- автоматического вывода антенны высотомера на цель и отображения значения высоты цели по данным высотомера;
- определения госпринадлежности целей («свой - чужой»);
- управления своими самолетами с использованием индикатора кругового обзора и самолетной радиостанции Р-862;
- пеленгации постановщиков активных помех.

Радиолокационный комплекс входит в состав радиотехнических формировании и соединений ПВО, а также зенитных ракетных (артиллерийских) частей и соединений войсковой ПВО.
Конструктивно антенно-фидерная система, вся аппаратура и наземный радиолокационный запросчик размещены на самоходном гусеничном шасси 426У со своими комплектующими. Кроме того, на нем располагаются два газотурбинных агрегата питания.

Двухкоординатная РЛС дежурного режима "Небо-СВ"


Предназначена для обнаружения и опознавания воздушных целей в дежурном режиме при работе в составе радиолокационных подразделений войсковой ПВО, оснащенных и не оснащенных средствами автоматизации.
РЛС представляет собой подвижную когерентно-импульсную радиолокационную станцию, размещенную на четырех транспортных единицах (три автомобиля и прицеп).
На первом автомобиле размещается приемо-передающая аппаратура, аппаратура защиты от помех, индикаторная аппаратура, аппаратура автосъема и передачи радиолокационной информации, имитации, связи и документирования, сопряжения с потребителями радиолокационной информации, функционального контроля и непрерывной диагностики, аппаратура наземного радиолокационного запросчика (НРЗ).
На втором автомобиле размещается антенно-поворотное устройство РЛС.
На третьем автомобиле - дизельная электростанция.
На прицепе размещается антенно-поворотное устройство НРЗ.
РЛС может доукомплектовываться двумя выносными индикаторами кругового обзора и кабелями сопряжения.

Мобильная трехкоординатная радиолокационная станция 9С18М1 «Купол»

Предназначена для обеспечения радиолокационной информацией командных пунктов зенитных ракетных соединений и частей войсковой ПВО и пунктов управления объектов системы ПВО мотострелковых и танковых дивизий, оснащенных ЗРК "Бук-М1-2" и "Тор-М1".

РЛС 9С18М1 представляет собой трехкоординатную когерентно-импульсную станцию обнаружения и целеуказания, использующую зондирующие импульсы большой длительности, что обеспечивает большую энергию излучаемых сигналов.

РЛС оснащена цифровой аппаратурой автоматического и полуавтоматического съема координат и аппаратурой опознавания обнаруженных целей. Весь процесс функционирования РЛС максимально автоматизирован благодаря применению быстродействующих вычислительных электронных средств. Для повышения эффективности работы в условиях активных и пассивных помех в РЛС используются современные методы и средства помехозащиты.

РЛС 9С18М1 размещается на гусеничном шасси высокой проходимости и оснащена системой автономного электроснабжения, аппаратурой навигации, ориентирования и топопривязки, средствами телекодовой и речевой радиосвязи. Кроме того, РЛС имеет встроенную систему автоматизированного функционального контроля, обеспечивающую быстрое отыскивание неисправного сменного элемента и тренажера для обработки навыков работы операторов. Для перевода их из походного положения в боевое и обратно используются устройства автоматического развертывания и свертывания станции.
РЛС может работать в жестких климатических условиях, перемещаться своим ходом по дорогам и бездорожью, а также перевозиться любым видом транспорта, включая воздушный.

ПВО ВВС
Радиолокационная станция "Оборона-14"



Предназначена для дальнего обнаружения и измерения дальности и азимута воздушных целей при работе в составе АСУ или автономно.

РЛС размещается на шести транспортных единицах (два полуприцепа с аппаратурой, два – с антенно-мачтовым устройством и два прицепа с системой энергоснабжения). На отдельном полуприцепе имеется выносной пост с двумя индикаторами. Он может быть удален от станции на расстояние до 1 км. Для опознавания воздушных целей РЛС комплектуется наземным радиозапросчиком.

В станции применена складывающаяся конструкция антенной системы, позволившая существенно сократить время ее развертывания. Защита от активных шумовых помех обеспечивается перестройкой рабочей частоты и трехканальной системой автокомпенсации, позволяющей автоматически формировать "нули" в диаграмме направленности антенны в направлении на постановщиков помех. Для защиты от пассивных помех применена когерентно-компенсационная аппаратура на потенциалоскопических трубках.

В станции предусмотрены три режима обзора пространства:

- "нижний луч" - с увеличенной дальностью обнаружения целей на малых и средних высотах;

- "верхний луч" - с увеличенной верхней границей зоны обнаружения по углу места;

Сканирования - с поочередным (через обзор) включением верхнего и нижнего лучей.

Станция может эксплуатироваться при температуре окружающей среды ± 50 °С, скорости ветра до 30 м/с. Многие из этих станций поставлены на экспорт и до сих пор эксплуатируются в войсках.

РЛС "Оборона-14" может быть модернизирована на современной элементной базе с использованием твердотельных передатчиков и цифровой системы обработки информации. Разработанный монтажный комплект аппаратуры позволяет прямо на позиции у потребителя выполнить в короткий срок работы по модернизации РЛС, приблизить ее характеристики к характеристикам современных РЛС, и продлить срок эксплуатации на 12 - 15 лет при затратах в несколько раз меньших, чем при закупке новой станции.
Радиолокационная станция "Небо"


Предназначена для обнаружения, опознавания, измерения трех координат и сопровождения воздушных целей, включая самолеты, изготовленные по технологии "стелс". Применяется в войсках ПВО в составе АСУ или автономно.

РЛС кругового обзора "Небо" располагается на восьми транспортных единицах (на трех полуприцепах - антенно-мачтовое устройство, на двух - аппаратура, на трех прицепах - система автономного энергоснабжения). Имеется выносное устройство, транспортируемое в тарных ящиках.

РЛС работает в метровом диапазоне волн и совмещает функции дальномера и высотомера. В этом диапазоне радиоволн РЛС малоуязвима от снарядов самонаведения и противолокационных ракет, действующих в других диапазонах, а в рабочем диапазоне эти средства поражения в настоящее время отсутствуют. В вертикальной плоскости реализовано (без использования фазовращателей) электронное сканирование высотомерным лучом в каждом элементе разрешения по дальности.

Помехозащищенность в условиях воздействия активных помех обеспечивается адаптивной перестройкой рабочей частоты и многоканальной системой автокомпенсации. Система защиты от пассивных помех также построена на базе корреляционных автокомпенсаторов.

Впервые для обеспечения помехозащищенности в условиях воздействия комбинированных помех реализована пространственно-временная развязка систем защиты от активных и пассивных помех.

Измерение и выдача координат осуществляются с помощью аппаратуры автосъема на базе встроенного спецвычислителя. Имеется автоматизированная система контроля и диагностирования.

Передающее устройство отличается высокой надежностью, которая достигается за счет стопроцентного резервирования мощного усилителя и использования группового твердотельного модулятора.
РЛС "Небо" может эксплуатироваться при температуре окружающей среды ± 50 °С, скорости ветра до 35 м/с.
Трехкоординатная подвижная обзорная РЛС 1Л117М


Предназначена для наблюдения за воздушным пространством и определения трех координат (азимут, наклонная дальность, высота) воздушных целей. РЛС построена на современных компонентах, обладает высоким потенциалом и низким потреблением энергии. Кроме того, РЛС имеет встроенный запросчик госопознавания и аппаратуру для первичной и вторичной обработки данных, комплект выносного индикаторного оборудования, благодаря чему может быть использована в автоматизированных и неавтоматизированных системах ПВО и Военно-воздушных силах для управления полетами и наведения перехвата, а также для управления воздушным движением (УВД).

РЛС 1Л117М является усовершенствованной модификацией предыдущей модели 1Л117.

Основным отличием усовершенствованной РЛС является использование клистронного выходного усилителя мощности передатчика, что позволило повысить стабильность излучаемых сигналов и, соответственно, коэффициент подавления пассивных помех и улучшить характеристики по низколетящим целям.

Кроме того, благодаря наличию перестройки частоты улучшены характеристики при работе радара в условиях помех. В устройстве обработки радиолокационных данных применены новые типы сигнальных процессоров, усовершенствована система дистанционного управления, контроля и диагностики.

В основной комплект РЛС 1Л117М входят:

Машина № 1 (приемопередающая) состоит из: нижней и верхней антенных систем, четырехканального волноводного тракта с приемо-передающим оборудованием ПРЛ и аппаратурой госопознавания;

Машина № 2 имеет шкаф (пункт) съема и шкаф обработки информации, радиолокационный индикатор с дистанционным управлением;

Машина № 3 перевозит две дизельные электростанции (главную и резервную) и комплект кабелей РЛС;

Машины № 4 и № 5 содержат вспомогательное оборудование (запчасти, кабели, коннекторы, монтажный комплект и т.д.). Они используются также для транспортировки разобранной антенной системы.

Обзор пространства обеспечивается механическим вращением антенной системы, которая образует V-образную диаграмму на-правленности, состоящую из двух лучей, один из которых расположен в вертикальной плоскости, а другой - в плоскости, расположенной под углом 45 к вертикальной. Каждая диаграмма направленности в свою очередь формируется двумя лучами, образованными на разных несущих частотах и имеющими ортогональную поляризацию. Передатчик РЛС формирует два последовательных фазокодоманипулированных импульса на разных частотах, которые посылаются на облучатели вертикальной и наклонной антенн через волноводный тракт.
РЛС может работать в режиме редкой частоты повторения импульсов, обеспечивающей дальность 350 км, и в режиме частых посылок с максимальной Дальностью 150 км. При повышенной частоте вращения (12 оборотов в минуту) используется только частый режим.

Приемная система и цифровая аппаратура СДЦ обеспечивают прием и обработку эхосигналов цели на фоне естественных помех и метеообразований. РЛС обрабатывает эхо-сигналы в "движущемся окне" с фиксированным уровнем ложных тревог и имеет межобзорную обработку для улучшения обнаружения целей на фоне помех.

Аппаратура СДЦ имеет четыре независимых канала (по одному на каждый приемный канал), каждый из которых состоит из когерентной и амплитудной частей.

Выходные сигналы четырех каналов объединяются попарно, в результате чего на экстрактор РЛС подаются нормированные амплитудные и когерентные сигналы вертикального и наклонного лучей.

Шкаф съема и обработки информации получает данные от ПЛР и аппаратуры госопознавания, а также сигналы вращения и синхронизации, и обеспечивает: выбор амплитудного или когерентного канала в соответствии с информацией карты помех; вторичную обработку РЛИ с построением траекторий по данным РЛС, объединение отметок ПРЛ и аппаратуры госопознавания, отображение на экране воздушной обстановки с "привязанными" к целям формулярами; экстраполяцию местоположения цели и прогнозирование столкновений; введение и отображение графической информации; управление режимом опознавания; решение за-дач наведения (перехвата); анализ и отображение метеорологических данных; статистическую оценку работы РЛС; выработку и передачу обменных сообщений на пункты управления.
Система дистанционного контроля и управления обеспечивает автоматическое функционирование радара, управление режимами работы, выполняет автоматический функциональный и диагностический контроль технического состояния оборудования, определение и поиск неисправностей с отображением методики проведения ремонтных и эксплуатационных работ.
Система дистанционного контроля обеспечивает локализацию до 80 % неисправностей с точностью до типового элемента замены (ТЭЗ), в других случаях - до группы ТЭЗов. На экране дисплея рабочего места дается полное отображение характерных показателей технического состояния радиолокационного оборудования в форме графиков, диаграмм, функциональных схем и пояснительных надписей.
Существует возможность передачи данных РЛС по кабельным линиям связи на выносное индикаторное оборудование для управления воздушным движением и обеспечения систем наведения и управления перехватом. РЛС обеспечивается электроэнергией от входящего в комплект поставки автономного источника питания; может также подключаться к промышленной сети 220/380 В, 50 Гц.
Радиолокационная станция "Каста-2Е1"


Предназначена для контроля воздушного пространства, определения дальности и азимута воздушных объектов - самолетов, вертолетов, дистанционно пилотируемых летательных аппаратов и крылатых ракет, летящих на малых и предельно малых высотах, на фоне интенсивных отражений от подстилающей поверхности, местных предметов и гидрометеообразований.
Мобильная твердотельная РЛС "Каста-2Е1" может быть использована в различных системах военного и гражданского назначения - противовоздушной обороны, береговой обороны и пограничного контроля, управления воздушным движением и контроля воздушного пространства в аэродромных зонах.
Отличительные особенности станции:
- блочно-модульное построение;
- сопряжение с различными потребителями информации и выдача данных в аналоговом режиме;
- автоматическая система контроля и диагностики;
- дополнительный антенно-мачтовый комплект для установки антенны на мачте с высотой подъема до 50 м
- твердотельное построение РЛС
- высокое качество выходной информации при воздействии импульсных и шумовых активных помех;
- возможность защиты и сопряжения со средствами защиты от противорадио-локационных ракет;
- возможность определения государственной принадлежности обнаруженных целей.
РЛС включает аппаратную машину, антенную машину, электроагрегат на прицепе и выносное рабочее место оператора, позволяющее управлять РЛС с защищенной позиции на удалении 300 м.
Антенна РЛС представляет собой систему, состоящую из расположенных в два этажа двух зеркальных антенн с облучателями и компенсационных антенн. Каждое зеркало антенны выполнено из металлической сетки, имеет овальный контур (5,5 м х 2,0 м) и состоит из пяти секций. Это дает возможность укладывать зеркала при транспортировке. При использовании штатной опоры обеспечивается положение фазового центра антенной системы на высоте 7,0 м. Обзор в угломестной плоскости осуществляется формированием одного луча специальной формы, по азимуту - за счет равномерного кругового враще-ния со скоростью 6 или 12 об./мин.
Для генерации зондирующих сигналов в РЛС применяется твердотельный передатчик, выполненный на СВЧ транзисторах, позволяющий получить на его выходе сигнал мощностью около 1 кВт.
Приемные устройства осуществляют аналоговую обработку сигналов от трех основных и вспомогательных приемных каналов. Для усиления принятых сигналов используется твердотельный малошумящий СВЧ усилитель с коэффициентом передачи не менее 25 дБ при собственном уровне шума не более 2 дБ.
Управление режимами РЛС осуществляется с рабочего места оператора (РМО). Радиолокационная информация отображается на координатно-знаковом индикаторе с диаметром экрана 35 см, а результаты контроля параметров РЛС - на таблично-знаковом индикаторе.
РЛС "Каста-2Е1" сохраняет работоспособность в интервале температур от -50 °С до +50 °С в условиях атмосферных осадков (иней, роса, туман, дождь, снег, гололед), ветровых нагрузок до 25 м/с и расположения РЛС на высоте до 2000 м над уровнем моря. РЛС может работать непрерывно в течение 20 суток.
Для обеспечения высокой готовности РЛС имеется резервируемая аппаратура. Кроме того, в комплект РЛС включены запасное имущество и принадлежности (ЗИП), рассчитанные на год эксплуатации РЛС.
Для обеспечения готовности РЛС в пределах всего срока службы отдельно поставляется групповой ЗИП (1 комплект на 3 РЛС).
Средний ресурс РЛС до капитального ремонта 1 15 тыс. часов; средний срок службы до капитального ремонта - 25 лет.
РЛС "Каста-2Е1" обладает высокой модернизационной способностью в части улучшения отдельных тактико-технических характеристик (увеличение потенциала, уменьшение объема аппаратуры обработки, средств отображения, увеличение производительности, сокращение времени развертывания и свертывания, повышение надежности и др.). Возможна поставка РЛС в контейнерном варианте с использованием цветного дисплея.
Радиолокационная станция "Каста-2Е2"


Предназначена для контроля воздушного пространства, определения дальности, азимута, эшелона высоты полета и трассовых характеристик воздушных объектов - самолетов, вертолетов, дистанционно пилотируемых летательных аппаратов и крылатых ракет, в том числе летящих на малых и предельно малых высотах, на фоне интенсивных отражений от подстилающей поверхности, местных предметов и гидро-метеообразований. Маловысотная трехкоординатная РЛС кругового обзора дежурного режима "Каста-2Е2" применяется в системах противовоздушной обороны, береговой обороны и пограничного контроля, управления воздушным движением и контроля воздушного пространства в аэродромных зонах. Легко адаптируется к использованию в различных системах гражданского назначения.

Отличительные особенности станции:
- блочно-модульное построение большинства систем;
- развертывание и свертывание штатной антенной системы с помощью автоматизированных электромеханических устройств;
- полностью цифровая обработка информации и возможность передачи ее по телефонным каналам и радиоканалу;
- полностью твердотельное построение передающей системы;
- возможность установки антенны на легкой высотной опоре типа "Унжа", обеспечивающей подъем фазового центра на высоту до 50 м;
- возможность обнаружения малоразмерных объектов на фоне интенсивных мешающих отражений, а также зависших вертолетов при одновременном обнаружении движущихся объектов;
- высокая защищенность от несинхронных импульсных помех при работе в плотных группировках радиоэлектронных средств;
- распределенный комплекс вычислительных средств, обеспечивающий автоматизацию процессов обнаружения, сопровождения, измерения координат и опознавания государственной принадлежности воздушных объектов;
- возможность выдачи радиолокационной информации потребителю в любой удобной для него форме - аналоговой, цифро-аналоговой, цифровой координатной или цифровой трассовой;
- наличие встроенной системы функционально-диагностического контроля, охватывающего до 96 % аппаратуры.
РЛС включает в себя аппаратную и антенную машины, основную и резервную электростанции, смонтированные на трех автомобилях повышенной проходимости КамАЗ-4310. Имеет выносное рабочее место оператора, обеспечивающее управление РЛС, удаленное от нее на расстояние 300 м.
Конструкция станции устойчива к воздействию избыточного давления во фронте ударной волны, оснащена устройствами санитарной и индивидуальной вентиляции. Предусмотрена работа системы вентиляции в режиме рециркуляции без использования заборного воздуха.
Антенна РЛС представляет собой систему, состоящую из зеркала двойной кривизны, узла рупорных облучателей и антенн подавления приема по боковым лепесткам. Антенная система формирует по основному радиолокационному каналу два луча с горизонтальной поляризацией: острый и косекансный, перекрывающие заданный сектор обзора.
В РЛС используется твердотельный передатчик, выполненный на СВЧ транзисторах, позволяющий получить на его выходе сигнал мощностью около 1 кВт.
Управление режимами РЛС может производиться как по командам оператора, так и использованием возможностей комплекса вычислительных средств.
РЛС обеспечивает устойчивую работу при температуре окружающего воздуха ±50 °С, относительной влажности воздуха до 98 %, скорости ветра до 25 м/с. Высота размещения над уровнем моря - до 3000 м. Современные технические решения и элементная база, примененные при создании РЛС "Каста-2Е2", позволили получить тактико-технические характеристики на уровне лучших зарубежных и отечественных образцов.

Всем спасибо за внимание:)

3. СТРУКТУРНАЯ СХЕМА РЛС

Импульсные РЛС, осуществляющие когерентный прием и содержащие устройство ЧПК, называют РЛС с селекцией движущихся целей (РЛС с СДЦ).

Основная цель использования РЛС с СДЦ является режекция сигналов пассивныхпомех от неподвижных целей (зданий, холмов, деревьев), и выделение сигналов отраженных от движущихся целей для их дальнейшего использования в обнаружителях и отображения радиолокационной обстановки на индикаторе.

РЛС с СДЦ подразделяются на истинно-когерентные и псевдо-когерентные.

В истинно-когерентных РЛС зондирующий сигнал представляет собой когерентную последовательность радиоимпульсов с одинаковой начальной фазой всех радиоимпульсов или с известной разностью начальных фаз радиоимпульсов отстоящих на .

В псевдо-когерентных РЛС зондирующий сигнал представляет собой некогерентную последовательность радиоимпульсов, но при обработке принятых сигналов случайность начальных фаз используется таким образом, что прием становится когерентным.

Другими словами, как в истинно-когерентных РЛС, так и в псевдо- когерентных РЛС сигнал на выходе линейного тракта приемника, полученный при отражении зондирующего сигнала от неподвижной точечной цели, представляет собой импульсную когерентную пачку с одинаковыми начальными фазами радиоимпульсов, а при отражении от подвижной точечной цели, движущейся с радиальной скоростью начальные фазы радиоимпульсов в соседних периодах повторения отличается на .

При анализе работы когерентно-импульсных РЛС обычно делается допущение, что в пределах главного "луча" диаграмма направленности постоянна, а вне главного "луча" излучение и прием не проводятся. Это допущение позволяет считать, что даже с учетом сканирования антенны амплитуды всех импульсов когерентной пачки, полученной при отражении зондирующего сигнала от точечной подвижной или неподвижной цели, одинаковы.

Истинно-когерентные РЛС строятся на базе многокаскадного передатчика с усилителями мощности на выходе, а псевдо-когерентные РЛС - на базе высокочастотного генератора.

Для проектируемой РЛС необходимо использовать сложный сигналы с , для этого, как правило, используются истинно-когерентные РЛС.

На рис.3.1 приведена упрощенная структурная схема одного из вариантов истинно-когерентных РЛС.


Рис. 3.1 Обобщенная структурная схема РЛС

Развернутая структурная схема истинно-когерентной РЛС приведена в приложении 3.

В данной РЛС с СДЦ в качестве передатчика используется усилитель мощности (УМ) с импульсной модуляцией, а опорный сигнал формируется с помощью стабильного генератора (СГ) гармонических колебаний на частоте f пр. Преимущество данной схемы состоит в том, что она позволяет применить активный способ формирования ФМС не только на несущей частоте, но и на более низких радиочастотах.

Сигнал от стабильного генератора (СГ) в качестве опорного подается на когерентный детектор (КД). Он же поступает на формирователь ФМ сигнала (ФФМС) и далее, на смеситель (СМ1), куда одновременно подается сигнал от местного гетеродина (МГ), генерирующего гармоническое колебание на частоте f мг =f 0 -f пр. Колебания с выхода СМ1 на частоте f 0 поступают на усилитель мощности (УМ), в котором происходит усиление и импульсная модуляция гармонического ФМ колебания частотой f 0 . На выходе усилителя мощности получаются ФМ импульсы требуемой мощности и длительности, следующие с частотой f п. Эти импульсы через антенный переключатель (АП) поступают на антенну.

В режиме приема сигналы с выхода АП поступают на смеситель (СМ2),куда одновременно подается колебание от МГ. Сигналы промежуточной частоты с выхода СМ2 поступают на усилитель радиочастоты (У), настроенный на промежуточную частоту, и далее на согласованный фильтр, затем на КД, куда подается опорный сигнал с выхода СГ. Сигналы с выхода КД поступают на устройство черезпериодной компенсации (ЧПК) заданной кратности. После преобразования в однополярные сигналы с выхода ЧПК подаются на накопитель пачки импульсов (БН) и затем на видеоусилитель (ВУ), а из него на устройства обнаружения и измерения координат цели.

Для компенсации нестабильности линии задержки, используемой в ЧПК, необходима корректировка периода повторения излучаемых импульсов. Для этих целей служит блок синхронизации (БС), который, учитывая эту нестабильность, управляет формированием пачки зондирующих импульсов и блоком начальной установки (БНУ) через логическую схему (ЛС).

Проведем выбор элементной базы к данной структурной схеме:

В РЛС обнаружения с круговым обзором наибольшее распространение получили зеркальные антенны, состоящие из слабонаправленного излучастеля и зеркального отражателя. Отражатель выполняется в виде усеченного парабалоида, что позволяет получить диаграмму направленности вида косеканс квадрат.

В качестве усилителя мощности используется лампа бегущей волны (ЛБВ)

Приемник в РЛС строится по супергетеродинной схеме, которая позволяет получить более высокую чувствительность приемного тракта. Входным устройством приемника является полупроводниковый смеситель.

Местный гетеродин вследствии высоких требований к стабильности частоты выполняется на базе стабильного задающего генератора.

Согласованный фильтр для ФМ сигнала может быть реализован на основе ультразвуковых линий задержки (УЛЗ).

Формирователь ФМС описан при расчете параметров ФМ сигнала.

СПИСОК ЛИТЕРАТУРЫ

1. Методические указания к изучению темы «Принципы и физические основы построения радиолокационных и радионавигационных систем» по дисциплине «Основы теории радиотехнических систем» для студентов специальности 23.01 / Сост. М.Б.Свердлик. – Одесса: ОПИ, 1991. – 112 с.

2. Тексты лекций по дисциплине «Основы теории радиотехнических систем». Раздел «Обнаружение сигналов» для студентов специальности 23.01 / Сост. М.Б.Свердлик. – Одесса: ОПИ. 1992. – 87 с.

3. Методические указания по изучению темы «Статистическая оценка параметров и синтез измеретилей координат целей» для студентов специальности 23.01 / Сост. М.Б.Свердлик. – Одесса: ОПИ, 1990. – 53 с.

4. Тексты лекций по дисциплине «Основы теории радиотехнических систем». Раздел «Сложные сигналы» для студентов специальности 23.01 / Сост. М.Б.Свердлик. – Одесса: ОПУ. 1996. – 51 с.

5. Методические указания к курсовому проектированию по дисциплине «Основы теории радиотехнических систем» для студентов специальности 23.01 / Сост. М.Б.Свердлик, А.А.Кононов, В.Г.Макаренко. – Одесса: ОПИ, 1991. – 52 с.

6. Лезин Ю. С. «Введение в теорию и технику радиотехнических систем»: Учеб. пособие для вузов. –М.: Радио и связь, 1986. – 280 с., ил.

7. «Радиотехнические системы» / Под. ред. Ю.М.Казаринова. – М.: Высш. шк., 1990.



Приложение 2

Структурная схема согласованного фильтра для когерентной 12-импульсной пачки 15-позиционных ФМ сигналов.

А – согласованный фильтр для одного импульса

В – накопитель пачки импульсов

Приложение 3


Развернутая структурная схема РЛС

Развернутая схема согласованного фильтра (СФ) и блока накопления (БН) приведена в приложении 2. Развернутую же схему ЧПК, благодаря любезности преподавателя, магистрантам можно не приводить.


Снизить вероятность возникновения пожаров на данном объекте. ЗАКЛЮЧЕНИЕ С целью обеспечения безопасности движения речного транспорта в камере шлюза Усть-Каменогорской гидроэлектростанции в данном дипломном проекте была разработана радиолокационная станция обнаружения надводных целей, она гораздо эффективнее, чем, например система видео наблюдения. Были рассчитаны основные тактико- ...

Техническому совершенству, боевым и эксплуатационным качествам не уступали лучшим зарубежным образцам, а нередко и превосходили их. Большинство из созданных в эти годы образцов в большей или меньшей степени представляли собой высокоточное оружие. В них использовались высокоточные инерциальные системы, системы коррекции и телеуправления движением на траектории и системы самонаведения на конечном...




КНИ явления слепой скорости и неоднозначности по дальности, для устранения которых понадобилось изменить общепринятую схему построения приемника сопровождения по дальности, а также задействовать ЦВС для решения ряда задач. Важное техническое решение было найдено, при проектировании приемной системы, в использовании одних и тех же узлов и элементов системы синхронизации для работы РЛС в режиме ЛЧМ...

Параметры обнаружения. Поскольку принимаемая пачка из N импульсов является когерентной, то. 2. Расчет параметров помехопостановщика 2.1 Расчет мощности передатчика заградительной и прицельной помех помеха помехозащита радиолокационная станция Можно выделить несколько основных типов передатчиков заградительных помех: прямошумовые передатчики; передатчики помех, использующие мощный...

РЛС излучает электромагнитную энергию и обнаруживает эхосигналы приходящие от отраженных объектов а так же определяет их характеристики. Целью курсового проекта является рассмотреть РЛС кругового обзора и рассчитать тактические показатели этой РЛС: максимальную дальность с учетом поглощения; реальную разрешающую способность по дальности и азимуту; реальную точность измерения дальности и азимута. В теоретической части приведена функциональная схема импульсной активной РЛС воздушных целей для управления воздушным движением.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Радиолокационные системы (РЛС) предназначены для обнаружения и определения текущих координат (дальности, скорости, угла места и азимута) отраженных объектов.

РЛС излучает электромагнитную энергию и обнаруживает эхо-сигналы, приходящие от отраженных объектов, а так же определяет их характеристики.

Целью курсового проекта является рассмотреть РЛС кругового обзора и рассчитать тактические показатели этой РЛС: максимальную дальность с учетом поглощения; реальную разрешающую способность по дальности и азимуту; реальную точность измерения дальности и азимута.

В теоретической части приведена функциональная схема импульсной активной РЛС воздушных целей для управления воздушным движением. Также приведены параметры системы и формулы для ее расчета.

В расчетной части были определены следующие параметры: максимальная дальность с учетом поглощения, реальная разрешающая способность по дальности и азимуту, точность измерения дальности и азимута.


1. Теоретическая часть

1.1 Функциональная схема РЛС кругового обзора

Радиолокация – область радиотехники, обеспечивающая радиолокационное наблюдение различных объектов, то есть их обнаружение, измерение координат и параметров движения, а также выявление некоторых структурных или физических свойств путем использования отраженных или переизлученных объектами радиоволн либо их собственного радиоизлучения. Информация, получаемая в процессе радиолокационного наблюдения, называется радиолокационной. Радиотехнические устройства радиолокационного наблюдения называются радиолокационными станциями (РЛС) или радиолокаторами. Сами же объекты радиолокационного наблюдения именуются радиолокационными целями или просто целями. При использовании отраженных радиоволн радиолокационными целями являются любые неоднородности электрических параметров среды (диэлектрической и магнитной проницаемостей, проводимости), в которой распространяется первичная волна. Сюда относятся летательные аппараты (самолеты, вертолеты, метеорологические зонды и др.), гидрометеоры (дождь, снег, град, облака и т. д.), речные и морские суда, наземные объекты (строения, автомобили, самолеты в аэропортах и др.), всевозможные военные объекты и т. п. Особым видом радиолокационных целей являются астрономические объекты.

Источником радиолокационной информации является радиолокационный сигнал. В зависимости от способов его получения различают следующие виды радиолокационного наблюдения.

  1. Радиолокация с пассивным ответом, основанная на том, что излучаемые РЛС колебания – зондирующий сигнал – отражаются от цели и попадают в приемник РЛС в виде отраженного сигнала. Такой вид наблюдения иногда называют также активной радиолокацией с пассивным ответом.

Радиолокация с активным ответом, именуемая активной радиолокацией с активным ответом, характеризуется тем, что ответный сигнал является не отраженным, а переизлученным с помощью специального ответчика – ретранслятора. При этом заметно повышается дальность и контрастность радиолокационного наблюдения.

Пассивная радиолокация основана на приеме собственного радиоизлучения целей , преимущественно миллиметрового и сантиметрового диапазонов. Если зондирующий сигнал в двух предыдущих случаях может быть использован как опорный, что обеспечивает принципиальную возможность измерения дальность и скорости, то в данном случае такая возможность отсутствует.

Систему РЛС можно рассматривать как радиолокационный канал наподобие радиоканалов связи или телеметрии. Основными составными частями РЛС являются передатчик, приемник, антенное устройство, оконечное устройство.

Главные этапы радиолокационного наблюдения – это обнаружение, измерение, разрешение и распознавание.

Обнаружением называется процесс принятия решения о наличии целей с допустимой вероятностью ошибочного решения.

Измерение позволяет оценить координаты целей и параметры их движения с допустимыми погрешностями.

Разрешение заключается в выполнении задач обнаружения и измерения координат одной цели при наличии других, близко расположенных по дальности, скорости и т. д.

Распознавание дает возможность установить некоторые характерные признаки цели: точечная она или групповая, движущаяся или групповая и т. д.

Радиолокационная информация, поступающая от РЛС, транслируется по радиоканалу или по кабелю на пункт управления. Процесс слежения РЛС за отдельными целями автоматизирован и осуществляется с помощью ЭВМ.

Навигация самолетов по трассе обеспечивается посредством таких же РЛС, которые применяются в УВД. Они используются как для контроля выдерживания заданной трассы, так и для определения местоположения в процессе полета.

Для выполнения посадки и ее автоматизации наряду с радиомаячными системами широко используются РЛС посадки, обеспечивающие слежение за отклонением самолета от курса и глиссады планирования.

В гражданской авиации используют также ряд бортовых радиолокационных устройств. Сюда, прежде всего, относится бортовая РЛС для обнаружения опасных метеообразований и препятствий. Обычно она же служит для обзора земли с целью обеспечения возможности автономной навигации по характерным наземным радиолокационным ориентирам.

Радиолокационные системы (РЛС) предназначены для обнаружения и определения текущих координат (дальности, скорости, угла места и азимута) отраженных объектов. РЛС излучает электромагнитную энергию и обнаруживает эхо-сигналы, приходящие от отраженных объектов, а так же определяет их характеристики.

Рассмотрим работу импульсной активной РЛС обнаружения воздушных целей для управления воздушным движением (УВД), структура которого приведена на рисунке 1. Устройство управления обзором (управление антенной) служит для просмотра пространства (обычно кругового) лучом антенны, узким в горизонтальной плоскости и широким в вертикальной.

В рассматриваемой РЛС используется импульсный режим излучения, поэтому в момент окончания очередного зондирующего радиоимпульса единственная антенна переключается от передатчика к приемнику и используется для приема до начала генерации следующего зондирующего радиоимпульса, после чего антенна снова подключается к передатчику и так далее.

Эта операция выполняется переключателем прием-передача (ППП). Пусковые импульсы, задающие период повторения зондирующих сигналов и синхронизирующие работу всех подсистем РЛС, генерирует синхронизатор. Сигнал с приемника после аналого-цифрового преобразователя (АЦП) поступает на аппаратуру обработки информации – процессор сигналов, где выполняется первичная обработка информации, состоящая в обнаружении сигнала и изменении координат цели. Отметки целей и трассы траекторий формируются при первичной обработке информации в процессоре данных.

Сформированные сигналы вместе с информацией об угловом положении антенны передаются для дальнейшей обработки на командный пункт, а также для контроля на индикатор кругового обзора (ИКО). При автономной работе радиолокатора ИКО служит основным элементом для наблюдения воздушной обстановки. Такая РЛС, обычно ведет обработку информации в цифровой форме. Для этого предусмотрено устройство преобразования сигнала в цифровой код (АЦП).

Рисунок 1 Функциональная схема РЛС кругового обзора

1.2 Определения и основные параметры системы. Формулы для расчета

Основные тактические характеристики РЛС

Максимальная дальность действия

Максимальная дальность действия задается тактическими требованиями и зависит от многих технических характеристик РЛС, условий распространения радиоволн и характеристик целей, которые в реальных условиях использования станций подвержены случайным изменениям. Поэтому максимальная дальность действия является вероятностной характеристикой.

Уравнение дальности в свободном пространстве (т. е. без учета влияния земли и поглощения в атмосфере) для точечной цели устанавливает связь между всеми основными параметрами РЛС.

где E изл - энергия, излучаемая в одном импульсе ;

S а - эффективная площадь антенны ;

S эфо - эффективная отражающая площадь цели ;

 - длина волны ;

к р - коэффициент различимости (отношение энергий сигнал/шум на входе приемника, при котором обеспечивается прием сигналов с заданными вероятностью правильного обнаружения W по и вероятностью ложной тревоги W лт );

Е ш - энергия шумов, действующих при приёме .

Где Р и - и мпульсная мощность ;

 и , - длительность импульсов .

Где d аг - горизонтальный размер зеркала антенны ;

d ав - вертикальный размер зеркала антенны .

k р = k р.т. ,

где k р.т. - теоретический коэффициент различимости.

k р.т. =,

где q 0 - параметр обнаружения;

N - количество импульсов, принимаемых от цели.

где W лт - вероятность ложной тревоги;

W по - вероятность правильного обнаружения .

где t обл ,

F и - частота посылок импульсов ;

Q a0,5 - ширина диаграммы направленности антенны на уровне 0,5 по мощности

где - угловая скорость вращения антенны.

где Т обз - период обзора.

где k =1,38  10 -23 Дж/град - постоянная Больцмана;

k ш - коэффициент шума приемника;

T - температура приемника в градусах Кельвина (T =300К).

Максимальная дальность действия РЛС с учетом поглощения энергии радиоволн.

где  осл - коэффициент ослабления ;

 D - ширина ослабляющего слоя .

Минимальная дальность действия РЛС

Если антенная система не вносит ограничений, то минимальная дальность действия РЛС определяется длительностью импульса и временем восстановления антенного переключателя.

где с - скорость распространения электромагнитной волны в вакууме, c = 3∙10 8 ;

 и , - длительность импульсов ;

τ в - время восстановления антенного переключателя.

Разрешающая способность РЛС по дальности

Реальную разрешающую способность по дальности при использовании в качестве выходного устройства индикатора кругового обзора определим по формуле

 (D )=  (D ) пот +  (D ) инд ,

г де  (D ) пот - потенциальная разрешающая способность по дальности;

 (D ) инд - разрешающая способность индикатора по дальности.

Для сигнала в виде некогерентной пачки прямоугольных импульсов:

где с - скорость распространения электромагнитной волны в вакууме; c = 3∙10 8 ;

 и , - длительность импульсов ;

 (D ) инд - разрешающая способность индикатора по дальности вычисляется по формуле

г де D шк - предельное значение шкалы дальности;

k э = 0,4 - коэффициент использования экрана,

Q ф - качество фокусировки трубки.

Разрешающая способность РЛС по азимуту

Реальную разрешающую способность по азимуту определяется по формуле:

 ( аз ) =  ( аз ) пот +  ( аз ) инд ,

где  ( аз ) пот - потенциальная разрешающая способность по азимуту при аппроксимации диаграммы направленности гауссовой кривой;

 ( аз ) инд - разрешающая способность индикатора по азимуту

 ( аз ) пот =1,3  Q a 0,5 ,

 ( аз ) инд = d n M f ,

где d n - диаметр пятна электронно-лучевой трубки;

M f – масштаб шкалы.

где r - удаление отметки от центра экрана.

Точность определения координат по дальност и

Точность определения дальности зависит от точности измерения запаздывания отраженного сигнала, ошибок из-за неоптимальности обработки сигнала, от наличия неучтенных запаздываний сигнала в трактах передачи, приема и индикации, от случайных ошибок измерения дальности в индикаторных устройствах.

Точность характеризуется ошибкой измерения. Результирующая среднеквадратическая ошибка измерения дальности определяется по формуле:

где  (D ) пот - потенциальная ошибка измерения дальности.

 (D ) распр – ошибка из за непрямолинейности распространения;

 (D ) апп - аппаратурная ошибка.

где q 0 - удвоенное отношение сигнал/шум.

Точность определения координат по азимуту

Систематические ошибки при измерении азимута могут возникнуть при неточном ориентировании антенной системы РЛС и вследствие несоответствия между положением антенны и масштабной электрической шкалой азимута.

Случайные ошибки измерения азимута цели обуславливаются нестабильностью работы системы вращения антенны, нестабильностью схем формирования отметок азимута, а также ошибками считывания.

Результирующая среднеквадратическая ошибка измерения азимута определяется:

Исходные данные (вариант 5)

  1. Длина волны  , [см] …................................................................. ....... .... 6
  2. Импульсная мощность Р и , [кВт] ..................................................... ....... 600
  3. Длительность импульсов  и , [мкс] .................................................. ....... 2,2
  4. Частота посылок импульсов F и , [Гц] .................................................... 700
  5. Горизонтальный размер зеркала антенны d аг [м] ................................ 7
  6. Вертикальный размер зеркала антенны d ав , [м] ................................... 2,5
  7. Период обзора Т обз , [с] ..................................................................... ....... 25
  8. Коэффициент шума приёмника k ш ................................................. ....... 5
  9. Вероятность правильного обнаружения W по ............................. .......... 0,8
  10. Вероятность ложной тревоги W лт.. ................................................ ....... 10 -5
  11. Диаметр экрана индикатора кругового обзора d э , [мм] .................... 400
  12. Эффективная отражающая площадь цели S эфо , [м 2 ] …...................... 30
  13. Качество фокусировки Q ф ............................................................... ...... 400
  14. Предельное значение шкалы дальности D шк1 , [км] ........................... 50 D шк2 , [км] .......................... 400
  15. Измерительные метки дальности  D , [км] ......................................... 15
  16. Измерительные метки азимута  , [град] ..................................... ...... 4

2. Расчет тактических показателей РЛС кругового обзора

2.1 Расчет максимальной дальности действия с учётом поглощения

Сначала рассчитывается максимальная дальность действия РЛС без учёта ослабления энергии радиоволн при распространении. Расчет проводится по формуле:

(1)

Подсчитаем и установим величины, входящие в это выражение:

Е изл = Р и  и =600  10 3  2,2  10 -6 =1,32 [Дж]

S а = d аг d ав =  7  2,5=8,75 [м 2 ]

k р = k р.т.

k р.т. =

101,2

0,51 [град]

14,4 [град/с]

Подставляя полученные значения, будем иметь:

t обл = 0,036 [с], N = 25 импульсов и k р.т. = 2 ,02.

Пусть = 10, тогда k P =20.

Е ш - энергия шумов, действующих при приёме:

E ш =kk ш T =1,38  10 -23  5  300=2,07  10 -20 [Дж]

Подставляя все полученные значения в (1), находим 634,38 [км]

Теперь определим максимальную дальность действия РЛС с учетом поглощения энергии радиоволн:

(2)

Значение  осл находим по графикам. Для  =6 см  осл принимаем равным 0,01 дБ/км. Предположим, что ослабление происходит на всей дальности действия. При таком условии формула (2) принимает вид трансцендентного уравнения

(3)

Уравнение (3) решим графоаналитическим способом. Для  осл = 0,01 дБ/км и D макс = 634,38 км рассчитываем D макс.осл = 305,9 км.

Вывод: Из полученных расчетов видно, что максимальная дальность действия РЛС с учетом ослабления энергии радиоволн при распространении равна D макс.ос л = 305,9 [км].

2.2 Расчет реальной разрешающей способности по дальности и азимуту

Реальную разрешающую способность по дальности при использовании в качестве выходного устройства индикатора кругового обзора определим по формуле:

 (D) =  (D) пот +  (D) инд

Для сигнала в виде некогерентной пачки прямоугольных импульсов

0,33 [км]

для D шк1 =50 [км],  (D) инд1 =0,31 [км]

для D шк2 =400 [км],  (D) инд2 =2,50 [км]

Реальная разрешающая способность по дальности:

для D шк1 =50 км  (D ) 1 =  (D) пот +  (D) инд1 =0,33+0,31=0,64 [км]

для D шк2 =400 км  (D ) 2 =  (D) пот +  (D) инд2 =0,33+2,50=2,83 [км]

Реальную разрешающую способность по азимуту рассчитаем по формуле:

 ( аз ) =  ( аз ) пот +  ( аз ) инд

 ( аз ) пот =1,3  Q a 0,5 =0,663 [град]

 ( аз ) инд = d n M f

Принимая r = k э d э / 2 (отметка на краю экрана), получим

0,717 [град]

 ( аз )=0,663+0,717=1,38 [град]

Вывод: Реальная разрешающая способность по дальности равна:

для D шк1 = 0,64 [км], для D шк2 = 2,83 [км].

Реальная разрешающая способность по азимуту:

 ( аз )=1,38 [град].

2.3 Расчет реальной точности измерения дальности и азимута

Точность характеризуется ошибкой измерения. Результирующую среднеквадратическую ошибку измерения дальности рассчитаем по формуле:

40,86

 (D ) пот =[км]

Ошибкой из-за непрямолинейности распространения  (D ) распр пренебрегаем. Аппаратурные ошибки  (D ) апп сводятся к ошибкам отсчета по шкале индикатора  (D ) инд . Принимаем метод отсчета по электронным меткам (масштабным кольцам) на экране индикатора кругового обзора.

 (D ) инд = 0,1  D =1,5 [км] , где  D - цена деления шкалы.

 (D ) = = 5 [км]

Результирующую среднеквадратическую ошибку измерения азимута определим аналогично:

0,065

 ( аз ) инд =0,1   = 0,4

Вывод: Расчитав результирующую среднеквадратическую ошибку измерения дальности, получаем  (D )  ( аз ) =0,4 [град].

Заключение

В данной курсовой работе произведен расчет параметров импульсной активной РЛС (максимальная дальность с учетом поглощения, реальная разрешающая способность по дальности и азимуту, точность измерения дальности и азимута) обнаружения воздушных целей для управления воздушным движением.

В ходе расчетов были получены следующие данные:

1. Максимальная дальность действия РЛС с учетом ослабления энергии радиоволн при распространении равна D макс.осл = 305,9 [км];

2. Реальная разрешающая способность по дальности равна:

для D шк1 = 0,64 [км];

для D шк2 = 2,83 [км].

Реальная разрешающая способность по азимуту:  ( аз )=1,38 [град].

3. Результирующая среднеквадратическая ошибка измерения дальности получаем  (D ) =1,5 [км]. Среднеквадратическая ошибка измерения азимута  ( аз ) =0,4 [град].

К достоинствам импульсных РЛС следует отнести простоту измерения расстояний до целей и их разрешения по дальности, особенно при наличии многих целей в зоне обзора, а также практически полную временную развязку между принимаемыми и излучаемыми колебаниями. Последнее обстоятельство позволяет применять одну и ту же антенну, как для передачи, так и для приема.

Недостатком импульсных РЛС является необходимость использования большой пиковой мощности излучаемых колебаний, а так же невозможность измерения малых дальностей – большая мертвая зона.

РЛС применяются для решения широкого круга задач: от обеспечения мягкой посадки космических аппаратов на поверхность планет до измерения скорости движения человека, от управления средствами поражения в системах противоракетной и противосамолетной обороны до индивидуальной защиты.

Список литературы

  1. Васин В.В. Дальность действия радиотехнических измерительных систем. Методическая разработка. - М.:МИЭМ 1977г.
  2. Васин В.В. Разрешающая способность и точность измерений в радиотехнических измерительных системах. Методическая разработка. - М.: МИЭМ 1977г.
  3. Васин В.В. Методы измерения координат и радиальной скорости объектов в радиотехнических измерительных системах. Конспект лекций. - М.: МИЭМ 1975г.

4. Бакулев П.А. Радиолокационные системы. Учебник для ВУЗов. – М.: «Радио-

Техника» 2004г.

5. Радиотехнические системы : Учебник для вузов / Ю. М. Казаринов [и др.]; Под ред. Ю. М. Казаринова. — М.: Академия, 2008. — 590 с.:

Другие похожие работы, которые могут вас заинтересовать.вшм>

1029. Рзработка программного обеспечения лабораторного комплекса компьютерной обучающей системы(КОС) «Экспертные системы» 4.25 MB
Область ИИ имеет более чем сорокалетнюю историю развития. С самого начала в ней рассматривался ряд весьма сложных задач, которые, наряду с другими, и до сих пор являются предметом исследований: автоматические доказательства теорем...
3242. Разработка системы цифровой коррекции динамических характеристик первичного преобразователя измерительной системы 306.75 KB
Обработка сигналов во временной области широко используется в современной электронной осциллографии и в цифровых осциллографах. А для представления сигналов в частной области используются цифровые анализаторы спектра. Для изучения математических аспектов обработки сигналов используются пакеты расширения
13757. Создание сетевой системы тестирования электронного сопровождения курса Операционные системы (на примере инструментальной оболочки Joomla) 1.83 MB
Программа для составления тестов позволит работать с вопросами в электронном виде использовать все виды цифровой информации для отображения содержания вопроса. Целью курсовой работы является создание современной модели webсервиса тестирования знаний с помощью средств webразработки и программная реализация для эффективной работы тестовой системы – защита от копирования информации и списывания при контроле знаний т. Последние два означают создание равных для всех условий прохождения контроля знаний невозможность списывания и...
523. Функциональные системы организма. Работа нервной системы 4.53 KB
Функциональные системы организма. Работа нервной системы Помимо анализаторов то есть сенсорных систем в организме функционируют другие системы. Эти системы могут быть отчетливо оформлены морфологически то есть иметь четкую структуру. К таким системам относятся например системы кровообращения дыхания или пищеварения.
6243. 44.47 KB
Системы класса CSRP Customer Synchronized Resource Plnning. Системы CRM Customer Reltionships Mngement управление отношениями с клиентами. Системы класса ЕАМ. Несмотря на то что передовые предприятия для укрепления на рынке внедряют мощнейшие системы класса ERP этого уже оказывается недостаточно для повышения доходов предприятия.
3754. Системы счисления 21.73 KB
Число - основное понятие математики, которое обычно означает либо количество, размер, вес и тому подобное, либо порядковый номер, расположение в последовательности, код, шифр и тому подобное.
4228. Социальные системы 11.38 KB
Парсонс визначає як складову більш загальної системи дії. Іншими складовими загальної системи дії є система культури система особистості та система поведінкового організму. Розмежування між чотирма виокремленими підсистемами дії можна провести за характерними для них функціями. Щоб система дії могла існувати вона має бути здатна до адаптації досягнення мети інтеграції і збереження взірця тобто має задовольняти чотирьом функціональним вимогам.
9218. КУРСОВЫЕ СИСТЕМЫ ЛА 592.07 KB
Комплексный метод определения курса. Для определения курса самолётов была создана самая многочисленная группа курсовых приборов и систем основанных на различных физических принципах работы. Поэтому при измерении курса возникают погрешности обусловленные вращением Земли и перемещением летательного аппарата относительно Земли. Для уменьшения погрешностей в показаниях курса производится коррекция кажущегося ухода гирополукомпаса и коррекция горизонтального положения оси ротора гироскопа.
5055. Политические системы 38.09 KB
Функции модернизации политической систем. Рассматривая политику как сферу взаимодействия человека и государства можно выделить два варианта построения этих связей постоянно но отнюдь не равномерно распространяющихся в истории политической жизни.
8063. Мультибазовые системы 7.39 KB
Мультибазовые системы позволяют конечным пользователям разных узлов получать доступ и совместно использовать данные без необходимости физической интеграции существующих баз данных. Они обеспечивают пользователям возможность управлять базами данных их собственных узлов без централизованного контроля который характерен для обычных типов распределенных СУБД. Администратор локальной базы данных может разрешить доступ к определенной части своей базы данных посредством создания схемы экспорта.
В продолжение темы:
Устройства

можно не только отправлять сообщения и совершать аудиовызовы, но еще и создавать видеоконференции. Для использования этой возможности требуется веб-камера. В ноутбуках она...

Новые статьи
/
Популярные