Расчет ширины спектра qpsk модуляции. Квадратурная модуляция и ее характеристики (QPSK, QAM). Дифференциальная бинарная фазовая модуляция DBPSK

Квадратурная фазовая манипуляция (QPSK)

Цифровая фазовая манипуляция определяется обычно числом отличающихся значений углов фазы: простейшая - двоичная фазовая манипуляция BPSK, когда несущая принимает значения фазы 0 или 180°. Когда для описания одного импульса модулирующего сигнала используется одно из 4-х значений фазового угла, например: 45°, 135°,-45°,- 135°, то в этом случае каждое значение фазового угла содержит два бита информации, и такой вид манипуляции называется квадратурной фазовой манипуляцией QPSK (Quadrature Phase Shift Keying).

Четырех позиционная (квадратурная) фазовая манипуляция (QPSK может быть реализована как 4-х позиционная со сдвигом O-QPSK (Offset Quadrature Phase-Shift Keying) или как дифференциальная квадратурная фазовая манипуляция DQPSK (Differential Quadrature Phase-Shift Keying).

При описании квадратурной фазовой манипуляции QPSK введем понятие символа. Символ - электрический сигнал, представляющий один или несколько двоичных битов.

Для предаваемого цифрового потока

0, 1, 1, 0, 1, 1, 1, 0, 0,...

каждые две двоичные единицы можно заменить одним символом

Представление группы двоичных единиц одним символом позволяет понизить скорость информационного потока. Так символьная скорость сигнала с QPSK в два раза меньше скорости сигнала с BPSK. Это позволяет уменьшить полосу, занимаемую сигналом с QPSK, примерно в два раза при той же битовой скорости.

Сигнал квадратурной фазовой манипуляции можно записать

где U - амплитуда несущей на частоте coo, i- натуральное число, (pi(t) - мгновенное значение фазы несущего колебания, определяемое фазовым углом модулирующего сигнала, принимающего значения

где i = 0,1,2,3.

Для формирования QPSK используется схема, близкая по архитектуре (рис. 10.31) к схеме BPSK-модулятора

Последовательный цифровой поток {Ь«} преобразуется в демультиплексоре (последовательно-параллельный преобразователь) в четную и нечетную компоненты: синфазный содержащий только нечетные {d" K } и квадратурный {df }, включающий только четные биты, после прохождения через ФНЧ (или сигнальный процессор) поступают на входы двойных балансных (квадратурных) модуляторов. Квадратурные модуляторы задают закон изменения фазы несущего колебания (QPSK) и после преобразования в сумматоре снова в последовательный информационный поток сигнал поступает через усилитель на вход ПФ. Полосовой фильтр ограничивает полосу радиосигнала, подавляя его гармоники.

Рассмотрим упрощенно процедуру формирования радиосигнала, выделив основные процессы. В верхнем плече квадратурного модулятора (и, соответственно, в нижнем) происходит перемножение четной xi(t) (нечетной XQ(t)) последовательности с синфазной (квадратурной) составляющей несущего колебания COS O) 0 t


Рис. 10.31


Сигнал на выходе квадратурного модулятора

Преобразуя полученное соотношение к виду где слагаемые можно представить в виде

Тогда соотношение (10.49) примет вид или

Как видно из (10.54) квадратурный модулятор можно применять для модуляции несущей как по амплитуде, так и по фазе. Если xi и xq принимают значения ±1, то получаем сигнал с амплитудной модуляцией и установившимся значением, равным V2. Обычно предполагается, что амплитуда несущей нормирована к единице и тогда, амплитудные значения цифровых последовательностей xi и xq должны составлять ±1/%/2или ±0,707 (рис. 10.32). Квадратурный модулятор можно использовать и в том случае, когда требуется одновременно модулировать амплитуду и фазу несущего колебания. Так например, в случае реализации квадратурной амплитудной модуляции (Quadrature Amplitude Modulation, QAM) каждый символ имеет фазу, отличную от фазы предыдущего символа, и /или отличную амплитуду.


Рис. 10.32

Благодаря разделению цифрового потока {Ь к } на синфазный и квадратурный, фаза каждого из них изменяется только каждые два бита 2 Ть. Фаза несущего колебания на этом интервал может принимать только одно из четырех значений, зависящих от хф!) и хд(1 ) (рис. 10.32а).

Если в течение следующего интервала никакой из импульсов цифрового потока не изменяет знак, то несущая сохраняет фазу радиосигнала неизменной. Если один из импульсов цифрового потока изменяет знак, то фаза получает сдвиг на ±л/2. Когда происходит одновременное изменение импульсов в /"} и {1 ^}, то это приводит к сдвигу фазы несущей на л. Скачкообразное изменение фазы на 180° приводит к к спаду огибающей амплитуды до нуля (аналогично рис. 10.26). Очевидно, что такие скачки фазы приводят к значительному расширению спектра передаваемого сигнала, что недопустимо в сетях фиксированной и тем более в сетях мобильной связи. Сигнал на выходе модулятора обычно фильтруется, усиливается и затем передается по каналу связи.

Как следует из названия, quadrature phase shift keying (QPSK) – квадратурная фазовая манипуляция является модификацией двоичной фазовой манипуляции - binary phase shift keying (BPSK). Вспомните, что метод BPSK на самом деле представляет собой DSBSC модуляцию с цифровым сообщением в качестве модулирующего сигнала. Важно отметить, что при BPSK модуляции информация передается последовательно бит за битом. QPSK также является разновидностью DSBSC модуляции, однако здесь передаются по два бита в течение каждого интервала времени, не используя другую несущую частоту.

В связи с тем, что при QPSK биты передаются парами, может возникнуть иллюзия, что скорость передачи в два раза выше, чем при BPSK. На самом деле, преобразование последовательности одиночных бит в последовательность сдвоенных бит обязательно снижает скорость передачи в два раза, что не позволяет получить выигрыш в скорости.

Тогда зачем этот метод модуляции нужен? Снижение в два раза скорости передачи сигналов методом QPSK позволяет занимать в два раз меньший участок радиочастотного спектра, чем BPSK сигнал. Это дает возможность увеличить количество абонентов в канале связи.

На рисунке 1 приведена блок-схема реализации математической модели QPSK модулятора.

На входе модулятора четные биты (с номерами 0, 2, 4 и т.д.) выделяются с помощью “расщепителя бит” из потока данных и перемножаются с несущей, формируя BPSK сигнал, обозначенный как PSKI. В то же время, нечетные биты (с номерами 1, 3, 5 и т.д.) также выделяются из потока данных и перемножаются с той же несущей, сдвинутой на 90°, формируя второй BPSK сигнал, обозначенный PSK Q . В этом и заключается принцип работы QPSK модулятора.

Перед передачей QPSK сигнала два BPSK сигнала просто складываются и, поскольку они имеют одну и ту же несущую частоту, эти сигналы занимают один и тот же участок спектра. Однако, для того чтобы разделить сигналы, несущие которых сдвинуты на 90º, требуется приемник с фазовым дискриминатором.

На рисунке 2 приведена блок-схема реализации математической модели QPSK демодулятора.

В приведенной схеме демодуляцию двух BPSK сигналов независимо и одновременно осуществляют два детектора на основе умножителей. На выходах детекторов появляются пары битов исходных данных, которые с помощью компаратора очищаются от искажений, и собираются в исходную последовательность с помощью 2-разрядного параллельно-последовательного преобразователя.

Чтобы понять, каким образом каждый детектор выделяет только один BPSK сигнал, а не оба вместе, вспомните, что детектирование DSBSC сигналов обладает “чувствительностью” к фазовому сдвигу. Таким образом, прием сообщения будет оптимальным, только в том случае, если несущие колебания передатчика и приемника будут точно совпадать по фазе. Важно отметить, что при фазовом рассогласовании 90º прием сообщения становится невозможным, т.к. амплитуда восстановленного сигнала становится равной нулю. Другими словами, сообщение полностью подавляется.

QPSK демодулятор данное обстоятельство превращает в преимущество. Обратите внимание, что детекторы произведения на рисунке 2 используют одну несущую, но для одного из детекторов несущая сдвинута на 90°. В этом случае один детектор восстанавливает данные из одного BPSK сигнала, одновременно подавляя другой BPSK сигнал, а второй детектор восстанавливает второй BPSK сигнал, подавляя первый BPSK сигнал.

Квадратурная модуляция и ее характеристики (QPSK, QAM)

Рассмотрим квадратурную фазовую манипуляцию (QPSK). Исходный поток данных dk(t)=d0, d1, d2,… состоит из биполярных импульсов, т.е. dk принимают значения +1 или -1 (рис. 3.5.а)), представляющие двоичную единицу и двоичный нуль. Этот поток импульсов разделяется на синфазный поток dI(t) и квадратурный - dQ(t), как показано на рис. 3.5.б).

dI(t)=d0, d2, d4,… (четные биты)

dQ(t)=d1, d3, d5,… (нечетные биты)

Удобную ортогональную реализацию сигнала QPSK можно получить, используя амплитудную модуляцию синфазного и квадратурного потоков на синусной и косинусной функциях несущей.

С помощью тригонометрических тождеств s(t) можно представить в следующем виде: s(t)=cos(2рf0t+и(t)). Модулятор QPSK, показанный на рис. 3.5.в), использует сумму синусоидального и косинусоидального слагаемых. Поток импульсов dI(t) используется для амплитудной модуляции (с амплитудой +1 или -1) косинусоиды.

Это равноценно сдвигу фазы косинусоиды на 0 или р; следовательно, в результате получаем сигнал BPSK. Аналогично поток импульсов dQ(t) модулирует синусоиду, что дает сигнал BPSK, ортогональный предыдущему. При суммировании этих двух ортогональных компонентов несущей получается сигнал QPSK. Величина и(t) будет соответствовать одному из четырех возможных сочетаний dI(t) и dQ(t) в выражении для s(t): и(t)=00, ±900 или 1800; результирующие векторы сигналов показаны в сигнальном пространстве на рис. 3.6. Так как cos(2рf0t) и sin(2рf0t) ортогональны, два сигнала BPSK можно обнаруживать раздельно. QPSK обладает рядом преимуществ перед BPSK: т.к. при модуляции QPSK один импульс передает два бита, то в два раза повышается скорость передачи данных или при той же скорости передачи данных, что и в схеме BPSK, используется в два раза меньшая полоса частот; а так же повышается помехоустойчивость, т.к. импульсы в два раза длиннее, а следовательно и больше по мощности, чем импульсы BPSK.



Рис. 3.5.

Рис. 3.6.

Квадратурную амплитудную модуляцию (KAM, QAM) можно считать логическим продолжением QPSK, поскольку сигнал QAM также состоит из двух независимых амплитудно-модулированных несущих.

При квадратурной амплитудной модуляции изменяется как фаза, так и амплитуда сигнала, что позволяет увеличить количество кодируемых бит и при этом существенно повысить помехоустойчивость. Квадратурное представление сигналов является удобным и достаточно универсальным средством их описания. Квадратурное представление заключается в выражении колебания линейной комбинацией двух ортогональных составляющих - синусоидальной и косинусоидальной (синфазной и квадратурной):

s(t)=A(t)cos(щt + ц(t))=x(t)sinщt + y(t)cosщt, где

x(t)=A(t)(-sinц(t)),y(t)=A(t)cosц(t)

Такая дискретная модуляция (манипуляция) осуществляется по двум каналам, на несущих, сдвинутых на 900 друг относительно друга, т.е. находящихся в квадратуре (отсюда и название).

Поясним работу квадратурной схемы на примере формирования сигналов четырехфазной ФМ (ФМ-4) (рис. 3.7).


Рис. 3.7.

Рис. 3.8. 16

Исходная последовательность двоичных символов длительностью Т при помощи регистра сдвига разделяется на нечетные импульсы y, которые подаются в квадратурный канал (cosщt), и четные - x, поступающие в синфазный канал (sinщt). Обе последовательности импульсов поступают на входы соответствующих формирователей манипулированных импульсов, на выходах которых образуются последовательности биполярных импульсов x(t) и y(t) с амплитудой ±Um и длительностью 2T. Импульсы x(t) и y(t) поступают на входы канальных перемножителей, на выходах которых формируются двухфазные (0, р) ФМ колебания. После суммирования они образуют сигнал ФМ-4.

На рис. 3.8. показано двухмерное пространство сигналов и набор векторов сигналов, модулированных 16-ричной QAM и изображенных точками, которые расположены в виде прямоугольной совокупности.

Из рис. 3.8. видно, что расстояние между векторами сигналов в сигнальном пространстве при QAM больше, чем при QPSK, следовательно, QAM является более помехоустойчивой по сравнению с QPSK,

Фазоманипулированный сигнал имеет вид:

где и – постоянные параметры, – несущая частота.

Информация передается посредством фазы . Так как при когерентной демодуляции в приемнике имеется несущая , то путем сравнения сигнала (3.21) с несущей вычисляется текущий сдвиг фазы . Изменение фазы взаимнооднозначно связано с информационным сигналом .

Двоичная фазовая манипуляции (BPSK – Binary Phase Shift Keying)

Множеству значений информационного сигнала ставится в однозначное соответствие множество изменений фазы . При изменении значения информационного сигнала фаза радиосигнала изменяется на 180º. Таким образом, сигнал BPSK можно записать в виде

Следовательно, . Таким образом, для осуществления BPSK достаточно умножить сигнал несущей на информационный сигнал, который имеет множество значений . На выходе модулятора сигналы

, .


Рис. 3.38. Временная форма и сигнальное созвездие сигнала BPSK:

а – цифровое сообщение; б – модулирующий сигнал; в – модулированное ВЧ-колебание; г – сигнальное созвездие

Временная форма сигнала и его созвездие показаны на рис.3.38.

Подвидом семейства BPSK является дифференциальная (относительная) BPSK (DBPSK). Необходимость относительной модуляции обусловлена тем, что большинство схем восстановления несущей частоты приводят к фазовой неоднозначности восстановленной несущей. В результате восстановления может образоваться постоянный фазовый сдвиг, кратный 180º. Сравнение принимаемого сигнала с восстановленной несущей приведет в этом случае к инвертированию (изменению значений всех битов на противоположные). Этого можно избежать, если кодировать не абсолютный сдвиг фазы, а его изменение относительно значения на предыдущем битовом интервале. Например, если на текущем битовом интервале значение бита изменилось по сравнению с предыдущим, то изменяется и значение фазы модулированного сигнала на 180º, если осталось прежним, то фаза также не изменяется.

Спектральная плотность мощности сигнала BPSK совпадает с плотностью сигнала OOK за исключением отсутствия в спектре сигнала несущей частоты:

, (3,22)

Квадратурная фазовая манипуляция (QPSK – Quadrature Phase Shift Keying)

Квадратурная фазовая манипуляция является четырехуровневой фазовой манипуляцией ( =4), при которой фаза высокочастотного колебания может принимать 4 различных значения с шагом, кратным π / 2 .

Соотношение между сдвигом фазы модулированного колебания из множества и множеством символов (дибитов) цифрового сообщения устанавливается в каждом конкретном случае стандартом на радиоканал и отображается сигнальным созвездием рис.3.39. Стрелками показаны возможные переходы из одного фазового состояния в другое.

Из рисунка видно, что соответствие между значениями символов и фазой сигнала установлено таким образом, что в соседних точках сигнального созвездия значения соответствующих символов отличаются лишь в одном бите. При передаче в условиях шума наиболее вероятной ошибкой будет определение фазы соседней точки созвездия. При указанном кодировании, несмотря на то, что произошла ошибка в определении значения символа, это будет соответствовать ошибке в одном (а не двух) бите информации. Таким образом, достигается снижение вероятности ошибки на бит. Указанный способ кодирования называется кодом Грея.

Каждому значению фазы модулированного сигнала соответствует 2 бита информации, и поэтому изменение модулирующего сигнала при QPSK-модуляции происходит в 2 раза реже, чем при BPSK-модуляции при одинаковой скорости передачи информации. Известно, что спектральная плотность мощности многоуровневого сигнала совпадает со спектральной плотностью мощности бинарного сигнала при замене символьного интервала на символьный . Для четырехуровневой модуляции =4 и, следовательно, .

Спектральная плотность мощности QPSK-сигнала при модулирующем сигнале с импульсами прямоугольной формы на основании (3.22) определяется выражением:

.

Из данной формулы видно, что расстояние между первыми нулями спектральной плотности мощности сигнала QPSK равно , что в 2 раза меньше, чем для сигнала BPSK. Другими словами, спектральная эффективность квадратурной модуляции QPSK в 2 раза выше, чем бинарной модуляции ВPSK.

Сигнал QPSK можно записать в виде

где .

Сигнал QPSK можно представить в виде синфазной и квадратурной составляющих

где - синфазная составляющая - го символа,

До этого мы рассматривали виды цифровой модуляции, которые при передаче одного символа передавали один бит информации. Теперь же мы введем еще один параметр, который назовем символьная скорость передачи . Если одним символом кодируется один бит информации всегда скорость передачи информации совпадала с символьной скоростью передатчика. Но если одним символом мы передаем сразу 2 бита информации, то символьная скорость передатчика равна . При этом часто встает вопрос как одним импульсом закодировать сразу два импульса? Ниже мы ответим на этот вопрос и рассмотрим квадратурную фазовую манипуляцию (quadrature phase shift keying QPSK). В данной статье будет большое количество иллюстративного материала, необходимого для понимания принципа QPSK.

Кодирование одним символом двух бит передаваемой информации

QPSK модуляция строится на основе кодирования двух бит передаваемой информации одним символом. При этом символьная скорость в два раза ниже скорости передачи информации. Для того чтобы понять как один символ кодирует сразу два бита рассмотрим рисунок 1.



Рисунок 1: Векторная диаграмма BPSK и QPSK сигналов

На рисунке 1 показаны векторные диаграммы BPSK и QPSK сигналов. BPSK сигнал был рассмотрен ранее , и мы говорили, что один символ BPSK кодирует один бит информации, при этом на векторной диаграмме BPSK всего две точки на синфазной оси , соответствующие нулю и единице передаваемой информации. Квадратурный канал в случае с BPSK всегда равен нулю. Точки на векторной диаграмме образуют созвездие фазовой манипуляции. Для того чтобы осуществить кодирование одним символом двух бит информации, необходимо, чтобы созвездие состояло из четырех точек, как это показано на векторной диаграмме QPSK рисунка 1. Тогда мы получим, что и и отличны от нуля, все точки созвездия расположены на единичной окружности. Тогда кодирование можно осуществить следующим образом: разбить битовый поток на четные и нечетные биты, тогда будет кодировать четные биты, а - нечетные. Два последовательно идущих друг за другом бита информации кодируются одновременно синфазным и квадратурным сигналами. Это наглядно показано на осциллограммах, приведенных на рисунке для информационного потока «1100101101100001».



Рисунок 2: Синфазная и квадратурная составляющие QPSK сигнала

На верхнем графике входной поток разделен на пары бит, соответствующих одной точке созвездия QPSK, показанного на рисунке 1. На втором графике показана осциллограмма , соответствующая передаваемой информации. Если четный бит равен 1 (обратите внимание что биты нумеруются с нуля, а не с единицы, поэтому первый в очереди бит имеет номер 0, а значит он четный по порядку), и если четный бит 0 (т.е. ). Аналогично строится квадратурный канал но только по нечетным битам. Длительность одного символа в два раза больше длительности одного бита исходной информации. Устройство выполняющее такое кодирование и согласно созвездию QPSK условно показано на рисунке 3.



Рисунок 3: Устройство кодирования синфазной и квадратурной составляющих на основе созвездия QPSK

В зависимость от пары бит на входе на выходе получаем постоянные в пределах длительности этой пары бит сигналы и , значение которых зависит от передаваемой информации.

Структурная схема QPSK модулятора

Структурная схема QPSK модулятора на основе показана на рисунке 4.



Рисунок 4: Структурная схема QPSK модулятора

Сигнал имеет вид:

(1)
Синфазная и квадратурная составляющие это ничто иное, как реальная и мнимая части QPSK сигнала , которые являются входными сигналами квадратурного модулятора. Тогда можно представить через его комплексную огибающую :

Важно отметить, что арктангенс должен вычисляться с учетом четверти комплексной плоскости (функции арктангенс 2). Вид фазовой огибающей для информационного потока «1100101101100001» показан на рисунке 5.



Рисунок 5: Фазовая огибающая QPSK сигнала

Фазовая огибающая представляет собой ступенчатую функцию времени, претерпевающую разрывы в моменты смены символа QPSK (напомним, что один символ QPSK несет два бита информации). При этом в пределах одного символа векторная диаграмма QPSK находится всегда в одной точке созвездия, как это показано внизу, а при смене символа - скачкообразно переходит в точку соответствующую следующему символу. Поскольку у QPSK всего четыре точки в созвездии, то фазовая огибающая может принимать всего четыре значения: и .

Амплитудная огибающая QPSK сигнала также может быть получена из комплексной огибающей :

(4)
Отметим, что амплитудная огибающая QPSK сигнала равна единице всюду, за исключением моментов смены передаваемых символов, т. е. в моменты перескока фазы и перехода очередной точке созвездия.

Пример осциллограммы QPSK сигнала при входном битовом потоке «1100101101100001» при скорости передачи информации и несущей частоте 20 кГц показан на рисунке 6.



Рисунок 6: Осциллограмма QPSK сигнала

Обратим внимание, что фаза несущего колебания может принимать четыре значения: и радиан. При этом фаза следующего символа относительно предыдущего может не изменится, или измениться на или на радиан. Также отметим, что при скорости передачи информации мы имеем символьную скорость , и длительность одного символа , что отчетливо видно на осциллограмме (скачок фазы происходит через 0.2 мс).

На рисунке 7 показан спектр BPSK и спектр QPSK сигналов при и несущей частоте 100 кГц. Можно заметить, что ширина главного лепестка, а также боковых лепестков QPSK сигнала вдвое меньше чем у BPSK сигнала при одой скорости передачи информации. Это обусловлено тем, что символьная скорость QPSK сигнала вдвое меньше скорости передачи информации , в то время как символьная скорость BPSK равна скорости передачи информации. Уровни боковых лепестков QPSK и BPSK равны.

Формирование спектра QPSK сигнала с помощью фильтров Найквиста

Ранее мы рассматривали вопрос сужения полосы сигнала при использовании формирующих фильтров Найквиста с частотной характеристикой вида приподнятого косинуса . Формирующие фильтры позволяют обеспечить передачу BPSK сигнала со скоростью 1 бит/с на 1 Гц полосы сигнала при исключении межсимвольной интерференции на приемной стороне. Однако такие фильтры нереализуемы, поэтому на практике применяют формирующие фильтры обеспечивающие 0.5 бит/c на 1 Гц полосы сигнала. В случае с QPSK скорость передачи информации вдвое больше символьной скорости , тогда использование формирующих фильтров дает нам возможность передавать 0.5 символа в секунду на 1 Гц полосы, или 1 бит/с цифровой информации на 1 Гц полосы при использовании фильтра с АЧХ вида приподнятого косинуса. Мы говорили, что импульсная характеристика формирующего фильтра Найквиста зависит от параметра имеет вид:
(5)

На рисунке 8 показаны спектры и при использовании формирующих фильтров Найквиста с параметром .

На рисунке 8 черным показан спектр QPSK сигнала без использования формирующего фильтра. Видно что применение фильтра Найквиста позволяет полностью подавить боковые лепестки как в спектре BPSK так и в спектре QPSK сигналов. Структурная схема QPSK модулятора при использовании формирующего фильтра показана на рисунке 9.



Рисунок 9: Структурная схема QPSK модулятора с использованием формирующего фильтра


Графики поясняющие работу QPSK модулятора показаны на рисунке 10.


Рисунок 10: Поясняющие графики

Цифровая информация поступает со скоростью и преобразуется в символы и в соответствии с созвездием QPSK, длительность одного передаваемого символа равна . Тактовый генератор выдает последовательность дельта-импульсов с периодом , но отнесенных к центру импульса и , как это показано на четвертом графике. Импульсы тактового генератора стробируют и при помощи ключей и получаем отсчеты и , показанные на двух нижних графиках, которые возбуждают формирующий фильтр интерполятор с импульсной характеристикой и на выходе имеем синфазную и квадратурную составляющие комплексной огибающей, которые подаются на универсальный квадратурный модулятор. На выходе модулятора получаем QPSK сигнал с подавлением боковых лепестков спектра.

Обратим внимание, что синфазная и квадратурная составляющие становятся непрерывными функциями времени, в результате вектор комплексной огибающей QPSK уже не находится в точках созвездия, перескакивая во время смены символа, а непрерывно движется комплексной плоскости как это показано на рисунке 11 при использовании фильтра приподнятого косинуса с различными параметрами .

, что наглядно демонстрируется осциллограммой QPSK сигнала, показанной на рисунке 12.



Рисунок 12: Осциллограмма QPSK сигнала при использовании формирующего фильтра Найквиста

Выводы

В данной статье мы ввели новое понятие - символьной скорости передачи информации, рассмотрели как можно одним символом закодировать два бита передаваемой информации при использовании QPSK модуляции. Было рассмотрено созвездие QPSK сигнала и структурная схема QPSK модулятора. Мы также проанализировали спектр QPSK сигнала и пути его сужения при помощи формирующего фильтра Найквиста (приподнятого косинуса). При этом было установлено, что включение формирующего фильтра приводит к непрерывному движению вектора комплексной огибающей QPSK сигнала по комплексной плоскости, в результате чего сигнал приобретает амплитудную огибающую. В следующей статье мы продолжим знакомится с QPSK, в частности рассмотрим ее разновидности: офсетную QPSK и pi/4 QPSK.
В продолжение темы:
Linux

Социальная сеть «Фотострана» многим не нравится своей навязчивостью, что также проявляется, когда пользователь желает удалить свой аккаунт. В самой сети есть подводные камни,...

Новые статьи
/
Популярные