Сколько информационных символов содержит каждый сигнал qpsk. Фазовые виды модуляции (BPSK, QPSK, M-PSK). Двоичная фазовая манипуляция

  • При квадратурной модуляции со сдвигом QPSK (Offset QPSK ) разовые (одномоментные) фазовые перемещения сигнальной точки ограничены 90 градусами. Одновременные ее перемещения по I и Q каналам, т.е. переход на 180 градусов невозможны, что исключает перемещение сигнальной точки через нуль

Одним из недостатков канонической квадратурной фазовой модуляции является то, что при одновременной смене символов в обоих квадратурных каналах модулятора в сигнале QPSK происходит скачок фазы несущей на 180°. При формировании сигнала обычной QPSK в этот момент происходят перемещения сигнальной точки через нуль, то есть имеются перемещения сигнальной точки на 180 градусов. В момент такого перемещения происходит уменьшение амплитуды формируемого РЧ сигнала до нуля.

Подобные значительные изменения сигнала нежелательны, поскольку приводят к увеличению полосы частот сигнала. Для усиления такого сигнала, имеющего значительную динамику, требуются высоколинейные тракты передачи и, в частности, усилители мощности. Исчезновение РЧ сигнала в момент перехода сигнальной точки через нуль ухудшает и качество функционирования систем синхронизации радиооборудования.


На рисунке ниже сравнивается перемещение сигнальной точки на векторной диаграмме для первых двух символов последовательности — от состояния 11 к 01 для традиционной QPSK и для QPSK со сдвигом.

Сравнение перемещений сигнальной точки с QPSK (слева) и OQPSK (справа) для двух символов 11 01


Для обозначения OQPSK используют ряд терминов: cдвиговая QPSK, офсетная QPSK, QPSK модуляция со смещением, четырехфазная ФМ со сдвигом. Эта модуляция используется, например, в системах CDMA для организации канала связи вверх, в устройствах стандарта ZigBee.

  • Формирование OQPSK

В модуляции ОQPSK используется то же самое сигнальное кодирование, что и в QPSK. Отличие заключается в том, что перемещение от одного модуляционного состояния к другому (от одной точки в созвездии до другой) выполняется за два шага. Вначале, в тактовый момент в начале символа изменяется компонента I и после половины символа — компонента Q (или наоборот).
Для этого квадратурные компоненты информационной последовательности I(t) и Q(t) смещаются во времени на длительность одного информационного элемента Т=Ts/2, т.е. на половину длительности символа, как показано на рисунке.



Формирование сигналов QPSK и OQPSK для последовательности 110100101110010011


При таком смещении компонентных сигналов каждое изменение фазы формируемого сигнала, по очереди производимое квадратурными сигналами, определяется лишь одним элементом исходной информационной последовательности, а не одновременно двумя (дибитом), как при QPSK. В результате переходы фазы на 180° отсутствуют, так как каждый элемент исходной информационной последовательности, поступающий на вход модулятора синфазного или квадратурного канала, может вызвать изменение фазы лишь на 0, +90° или -90°.

Резкие фазовые перемещения сигнальной точки при формировании сигнала OQPSK происходят вдвое чаще по сравнению с QPSK, так как компонентные сигналы не изменяются одновременно, но они нерезкие. Другими словами, величина фазовых переходов является в OQPSK меньшей по сравнению с QPSK, но частота их вдвое больше.



Частота фазовых переходов сигналов QPSK и OQPSK для повторяющейся битовой последовательности 1101


В традиционной схеме квадратурного модулятора формирование сигнала QPSK можно получить, применив в одном из управляющих квадратурных каналов задержку компонентов цифрового сигнала на длительность бита Т.

Если при формировании OQPSK используется соответствующий фильтр, перемещение между различными точками сигнального созвездия может быть выполнено почти полностью по окружности (рисунок). В результате амплитуда формируемого сигнала остается почти постоянной.

Квадратурная фазовая модуляция QPSK (Quadrate Phase Shift Keying) является четырехуровневой фазовой модуляцией (M = 4 ), при которой фаза ВЧ колебания может принимать четыре различных значения с шагом, равным

π / 2 . Каждое

значение фазы

модулированного сигнала

содержит два бита информации. Поскольку

абсолютные

значения фаз

не имеют значения, выберем

± π 4, ± 3 π 4 .

Соответствие

значениями

модулированного сигнала ± π 4, ± 3 π 4

и передаваемыми

дибитами информационной последовательности 00, 01, 10, 11 устанавливается кодом Грея (см. рис.3.13) или какимлибо иным алгоритмом. Очевидно, что значения модулирующего сигнала при QPSK модуляции изменяются в два раза реже, чем при BPSK модуляции (при одинаковой скорости передачи информации).

Комплексная огибающая g (t ) при QPSK модуляции

представляет собой псевдослучайный полярный baseband сигнал, квадратурные компоненты которого, согласно

(3.41), принимают численные значения ± 1 2 . При этом

длительность каждого символа комплексной огибающей в два раза больше, чем символов в исходном цифровом модулирующем сигнале. Как известно, спектральная плотность мощности многоуровневого сигнала совпадает со спектральной плотностью мощности бинарного сигнала при

M = 4 и, следовательно, T s = 2T b . Соответственно спектральная плотность мощности QPSK сигнала (для

положительных частот) на основании уравнения (3.28) определяется выражением:

P(f ) = K × {

sin 2

p×(f - f

) × 2 ×T

Из уравнения (3.51) следует, что расстояние между первыми нулями в спектральной плотности мощности QPSK сигнала равно D f = 1 T b , что в два раза меньше, чем

для модуляции BPSK. Другими словами, спектральная эффективность квадратурной QPSK модуляции в два раза выше, чем бинарной фазовой модуляции BPSK.

cos(ωc t )

Формирующий

w(t)

Формирователь

квадратурных

Сумматор

компонент

I(t)

sin(ωc t )

Формирующий

Рис .3.15 . Квадратурный модулятор QPSK сигнала

Функциональная схема квадратурного QPSK модулятора показана на рис.3.15. На преобразователь кода поступает цифровой сигнал со скоростью R . Преобразователь кода формирует квадратурные компоненты комплексной

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

огибающей в соответствии с табл.3.2 со скоростью, в два раза меньшей по сравнению с исходной. Формирующие фильтры обеспечивают заданную полосу частот модулирующего (и соответственно модулированного) сигнала. Квадратурные компоненты несущей частоты поступают на ВЧ перемножители от схемы синтезатора частоты. На выходе сумматора имеет место результирующий модулированный QPSK сигнал s (t ) в

соответствии с (3.40).

Таблица 3.2

Формирование QPSK сигнала

cos[θk ]

sin[θk ]

компонента

I -компонента

Сигнал QPSK, так же как и сигнал BPSK, не содержит в своем спектре несущей частоты и может быть принят только с помощью когерентного детектора, который является зеркальным отражением схемы модулятора и

s(t)

cos(ωc t )

восстановления

цифрового

sin(ωc t )

I(t)

Рис .3.16 . Квадратурный демодулятор QPSK сигнала

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

показан на рис.3.16.

3.3.4. Дифференциальная бинарная фазовая модуляция DBPSK

Принципиальное отсутствие несущей частоты в спектре модулированного сигнала в некоторых случаях приводит к неоправданному усложнению демодулятора в приемнике. QPSK и BPSK сигналы могут быть приняты только когерентным детектором, для реализации которого необходимо либо передавать наравне с сигналом еще и опорную частоту, либо реализовать в приемнике специальную схему восстановления несущей. Существенное упрощение схемы детектора достигается в том случае, когда фазовая модуляция реализуется в дифференциальной форме DBPSK (Differential Binary Phase Shift Keying).

Идея дифференциального кодирования состоит в том, чтобы передавать не абсолютное значение информационного символа, а его изменение (или не изменение) относительно предыдущего значения. Другими словами, каждый последующий передаваемый символ содержит в себе информацию о предыдущем символе. Тем самым для извлечения исходной информации при демодуляции в качестве опорного сигнала можно использовать не абсолютное, а относительное значение модулируемого параметра несущей частоты. Алгоритм дифференциального бинарного кодирования описывается следующей формулой:

d k =

m k Å d k −1

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

где { m k } - исходная бинарная последовательность; {d k }-

результирующая бинарная последовательность; Å - символ сложения по модулю 2.

Пример дифференциального кодирования показан в табл.3.3.

Таблица 3.3

Дифференциальное кодирование бинарного

цифрового сигнала

{d k

{d k

Аппаратно дифференциальное кодирование реализуется в виде схемы задержки сигнала на временной интервал, равный длительности одного символа в бинарной информационной последовательности и схемы сложения по модулю 2 (рис.3.17).

Логическая схема

d k =

m k Å d k −1

Линия задержки

Рис .3.17. Дифференциальный кодер DBPSK сигнала

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

Дифференциальный некогерентный детектор DBPSK сигнала на промежуточной частоте показан на рис.3.18.

Детектор осуществляет задержку принятого импульса на один символьный интервал, а затем перемножение полученного и задержанного символов:

s k × s k −1 = d k sin(w c t )d k −1 × sin(w c t ) = 1 2 d k × d k −1 × .

После фильтрации с помощью ФНЧ или согласованного

Очевидно, что ни временная форма комплексной огибающей, ни спектральный состав дифференциального DВPSK сигнала не будут отличаться от обычного BPSK сигнала.

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

3.3.5. Дифференциальная квадратурная фазовая модуляция π/4 DQPSK

Модуляция π/4 DQPSK (Differential Quadrate Phase Shift Keying) является формой дифференциальной фазовой модуляции, специально разработанной для четырехуровневых QPSK сигналов. Сигнал этого вида модуляции может быть демодулирован некогерентным детектором, как это свойственно сигналам DBPSK модуляции.

Отличие дифференциального кодирования в π/4 DQPSK модуляции от дифференциального кодирования в DBPSK модуляции состоит в том, что передается относительное изменение не модулирующего цифрового символа, а модулируемого параметра, в данном случае фазы. Алгоритм формирования модулированного сигнала поясняется табл.3.4.

Таблица 3.4

Алгоритм формирования сигнала π/4 DQPSK

Информацион

ный дибит

Приращение

ϕ = π 4

ϕ = 3 π 4

ϕ = −3 π 4

ϕ = − π 4

фазового угла

Q -компонента

Q = sin (θk ) = sin (θk − 1 +

I -компонента

I = cos(θ k ) = cos(θ k − 1 +

Каждому дибиту исходной информационной последовательности ставится в соответствие приращение фазы несущей частоты. Величина приращения фазового угла кратна π/4. Следовательно, абсолютный фазовый угол θ k может принимать восемь различных значений с шагом

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

π/4, а каждая квадратурная компонента комплексной огибающей - одно из пяти возможных значений:

0, ±1 2 , ±1 . Переход от одной фазы несущей частоты к другой можно описать с помощью диаграммы состояний на рис.3.13 для M = 8 поочередным выбором абсолютного значения фазы несущей частоты из четырехпозиционных

Блок-схема π/4 DQPSK модулятора показана на рис.3.19. Исходный бинарный цифровой модулирующий сигнал поступает в преобразователь код-фаза. В преобразователе после задержки сигнала на один символьный интервал определяется текущее значение дибита и соответствующее ему приращение фазы φ k несущей частоты. Это

приращение фазы поступает на вычислители квадратурных I Q компонент комплексной огибающей (табл.3.3). Выход

I Q вычислителей представляет собой пятиуровневый

цифровой сигнал с длительностью импульсов, в два раза

Q = cos(θk –1 + Δφ)

Формирующий фильтр

cos(ωc t )

Δφk

wk (t)

Преобразователь

Δφk

sin(ωc t )

I = sin(θk –1 + Δφ)

Формирующий фильтр

Рис .3.19 . Функциональная схема π/4 DQPSK модулятора

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

превышающей длительность импульсов исходного бинарного цифрового сигнала. Далее квадратурные I (t ), Q (t ) компоненты комплексной огибающей проходят

формирующий фильтр и поступают на высокочастотные перемножители для формирования квадратурных компонент высокочастотного сигнала. На выходе высокочастотного сумматора имеет место полностью сформированный

π/4 DQPSK сигнал.

Демодулятор π/4 DQPSK сигнала (рис.3.20) предназначен для детектирования квадратурных компонент модулирующего сигнала и имеет структуру, похожую на структуру демодулятора DBPSK сигнала. Входной ВЧ сигнал r (t ) = cos(ω c t + θ k ) на промежуточной частоте

rI (t)

r(t)

Задержка τ = T s

Решающее w(t) устройство

Сдвиг фазы Δφ = π/2

rQ (t)

Рис .3.20 . Демодулятор π/4 DQPSK сигнала на промежуточной частоте

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

поступает на вход схемы задержки и ВЧ перемножители. Сигнал на выходе каждого перемножителя (после удаления высокочастотных компонент) имеет вид:

r I (t ) = cos(w c t + q k ) × cos(w c t + q k −1 ) = cos(Df k );

r Q (t ) = cos(w c t + q k ) × sin(w c t + q k −1 ) = sin(Df k ).

Решающее устройство анализирует baseband сигналы на выходе каждого ФНЧ. Определяется знак и величина приращения фазового угла, а, следовательно, и значение принятого дибита. Аппаратурная реализация демодулятора на промежуточной частоте (см. рис.3.20) является не простой задачей из-за высоких требований к точности и стабильности высокочастотной схемы задержки. Более распространен вариант схемы демодулятора π/4 DQPSK сигнала с непосредственным переносом модулированного сигнала в baseband диапазон, как это показано на рис.3.21.

r(t)

r11 (t)

rQ (t)

τ = T s

cos(ωc t + γ)

r1 (t)

r12 (t)

rI (t)

r21 (t)

sin(ωc t + γ)

r2 (t)

r22 (t)

τ = T s

Рис .3.21 . Демодулятор π/4 QPSK сигнала в baseband диапазоне

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

Непосредственный перенос модулированного сигнала в baseband диапазон позволяет реализовать полностью

переноса спектра модулированного колебания в baseband диапазон. Опорные сигналы, также поступающие на входы ВЧ перемножителей, не синхронизированы по фазе с несущей частотой модулированного колебания. В результате baseband сигналы на выходе фильтров низкой частоты имеют произвольный фазовый сдвиг, который считается постоянным в течение символьного интервала:

(t ) = cos(w c t + q k ) × cos(w c t + g ) = cos(q k - g );

r 2 (t ) = cos(w c t + q k ) × sin(w c t + g ) = sin(q k - g ),

где γ - сдвиг фазы между принимаемым и опорным сигналами.

Демодулированные baseband сигналы поступают на две схемы задержки и четыре baseband перемножителя, на выходах которых имеют место следующие сигналы:

r 11 (t ) = cos(q k - g ) × cos(q k −1 - g );

r 22 (t ) = sin(q k - g ) × sin(q k −1 - g );

r 12 (t ) = cos(q k - g ) × sin(q k −1 - g );

r 21 (t ) = sin(q k - g ) × cos(q k −1 - g ).

В результате суммирования выходных сигналов перемножителей исключается произвольный фазовый сдвиг γ, остается только информация о приращении фазового угла несущей частоты Δφ:

Dj k );

r I (t ) = r 12 (t ) + r 21 (t ) =

R 12 (t ) = cos(q k - g ) × sin(q k −1 - g ) + r 21 (t ) =

Sin(q k - g ) × cos(q k −1 - g ) = sin(q k - q k −1 ) = sin(Dj k ).

Реализация схемы задержки в baseband диапазоне и

последующая цифровая обработка демодулированного сигнала существенно повышают стабильность работы схемы и достоверность приема информации.

3.3.6. Квадратурная сдвиговая фазовая модуляция

Квадратурная сдвиговая фазовая модуляция OQPS (Offset Quadrate Phase Shift Keying) является частным случаем квадратурной модуляции QPSK. Огибающая несущей частоты QPSK сигнала теоретически постоянна. Однако при ограничении полосы частот модулирующего сигнала свойство постоянства амплитуды фазомодулированного сигнала утрачивается. При передаче сигналов с BPSK или QPSK модуляцией изменение фазы на символьном интервале может быть величиной π или p 2 . Интуитивно

понятно, что чем больше мгновенный скачок фазы несущей, тем больше сопутствующая АМ, возникающая при ограничении спектра сигнала. В самом деле, чем больше величина мгновенного изменения амплитуды сигнала при изменении его фазы, тем большую величину имеют гармоники спектра, соответствующего этому временному скачку. Другими словами, при ограничении спектра сигнала

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

величина возникающей внутренней АМ будет пропорциональна величине мгновенного скачка фазы несущей частоты.

В QPSK сигнале можно ограничить максимальный скачок фазы несущей, если использовать временной сдвиг величиной T b между Q и I каналами, т.е. ввести элемент

задержки величиной T b в канал Q или I . Использование

временного сдвига приведет к тому, что полное необходимое изменение фазы будет происходить в два этапа: сначала изменяется (или не изменяется) состояние одного канала, затем другого. На рис.3.22 показана последовательность модулирующих импульсов Q (t ) и I (t ) в

квадратурных каналах для обычной QPSK модуляции.

Q(t)

I(t)

I(t– Tb )

2T s

Рис .3.22 . Модулирующие сигналы в I/Q каналах при QPSK

и OQPSK модуляции

Длительность каждого импульса равна T s = 2 T b . Изменение фазы несущей при изменении любого символа в I или Q

PDF created with FinePrint pdfFactory Pro trial version http://www.fineprint.com

Квадратурная фазовая манипуляция (QPSK)

Цифровая фазовая манипуляция определяется обычно числом отличающихся значений углов фазы: простейшая - двоичная фазовая манипуляция BPSK, когда несущая принимает значения фазы 0 или 180°. Когда для описания одного импульса модулирующего сигнала используется одно из 4-х значений фазового угла, например: 45°, 135°,-45°,- 135°, то в этом случае каждое значение фазового угла содержит два бита информации, и такой вид манипуляции называется квадратурной фазовой манипуляцией QPSK (Quadrature Phase Shift Keying).

Четырех позиционная (квадратурная) фазовая манипуляция (QPSK может быть реализована как 4-х позиционная со сдвигом O-QPSK (Offset Quadrature Phase-Shift Keying) или как дифференциальная квадратурная фазовая манипуляция DQPSK (Differential Quadrature Phase-Shift Keying).

При описании квадратурной фазовой манипуляции QPSK введем понятие символа. Символ - электрический сигнал, представляющий один или несколько двоичных битов.

Для предаваемого цифрового потока

0, 1, 1, 0, 1, 1, 1, 0, 0,...

каждые две двоичные единицы можно заменить одним символом

Представление группы двоичных единиц одним символом позволяет понизить скорость информационного потока. Так символьная скорость сигнала с QPSK в два раза меньше скорости сигнала с BPSK. Это позволяет уменьшить полосу, занимаемую сигналом с QPSK, примерно в два раза при той же битовой скорости.

Сигнал квадратурной фазовой манипуляции можно записать

где U - амплитуда несущей на частоте coo, i- натуральное число, (pi(t) - мгновенное значение фазы несущего колебания, определяемое фазовым углом модулирующего сигнала, принимающего значения

где i = 0,1,2,3.

Для формирования QPSK используется схема, близкая по архитектуре (рис. 10.31) к схеме BPSK-модулятора

Последовательный цифровой поток {Ь«} преобразуется в демультиплексоре (последовательно-параллельный преобразователь) в четную и нечетную компоненты: синфазный содержащий только нечетные {d" K } и квадратурный {df }, включающий только четные биты, после прохождения через ФНЧ (или сигнальный процессор) поступают на входы двойных балансных (квадратурных) модуляторов. Квадратурные модуляторы задают закон изменения фазы несущего колебания (QPSK) и после преобразования в сумматоре снова в последовательный информационный поток сигнал поступает через усилитель на вход ПФ. Полосовой фильтр ограничивает полосу радиосигнала, подавляя его гармоники.

Рассмотрим упрощенно процедуру формирования радиосигнала, выделив основные процессы. В верхнем плече квадратурного модулятора (и, соответственно, в нижнем) происходит перемножение четной xi(t) (нечетной XQ(t)) последовательности с синфазной (квадратурной) составляющей несущего колебания COS O) 0 t


Рис. 10.31


Сигнал на выходе квадратурного модулятора

Преобразуя полученное соотношение к виду где слагаемые можно представить в виде

Тогда соотношение (10.49) примет вид или

Как видно из (10.54) квадратурный модулятор можно применять для модуляции несущей как по амплитуде, так и по фазе. Если xi и xq принимают значения ±1, то получаем сигнал с амплитудной модуляцией и установившимся значением, равным V2. Обычно предполагается, что амплитуда несущей нормирована к единице и тогда, амплитудные значения цифровых последовательностей xi и xq должны составлять ±1/%/2или ±0,707 (рис. 10.32). Квадратурный модулятор можно использовать и в том случае, когда требуется одновременно модулировать амплитуду и фазу несущего колебания. Так например, в случае реализации квадратурной амплитудной модуляции (Quadrature Amplitude Modulation, QAM) каждый символ имеет фазу, отличную от фазы предыдущего символа, и /или отличную амплитуду.


Рис. 10.32

Благодаря разделению цифрового потока {Ь к } на синфазный и квадратурный, фаза каждого из них изменяется только каждые два бита 2 Ть. Фаза несущего колебания на этом интервал может принимать только одно из четырех значений, зависящих от хф!) и хд(1 ) (рис. 10.32а).

Если в течение следующего интервала никакой из импульсов цифрового потока не изменяет знак, то несущая сохраняет фазу радиосигнала неизменной. Если один из импульсов цифрового потока изменяет знак, то фаза получает сдвиг на ±л/2. Когда происходит одновременное изменение импульсов в /"} и {1 ^}, то это приводит к сдвигу фазы несущей на л. Скачкообразное изменение фазы на 180° приводит к к спаду огибающей амплитуды до нуля (аналогично рис. 10.26). Очевидно, что такие скачки фазы приводят к значительному расширению спектра передаваемого сигнала, что недопустимо в сетях фиксированной и тем более в сетях мобильной связи. Сигнал на выходе модулятора обычно фильтруется, усиливается и затем передается по каналу связи.

Посетовал на отсутствие статей описывающей физическую сторону передачи информации по радио каналу.
Мы решили исправить это упущение и написать цикл постов о беспроводной передаче данных.
В первом из них мы расскажем о главном аспекте передачи информации посредством радиосигнала – модуляции.


Модуля́ция (лат. modulatio - размерность) - процесс изменения одного или нескольких параметров высокочастотного несущего колебания по закону низкочастотного информационного сигнала.
Передаваемая информация заложена в управляющем сигнале, а роль переносчика информации выполняет высокочастотное колебание, называемое несущим.
Модуляция может осуществляться изменением амплитуды, фазы или частоты высокочастотной несущей.
Эта техника дает несколько важных преимуществ:

  1. Позволяет сформировать радиосигнал, который будет обладать свойствами соответствующими свойствам несущей частоты. О свойствах волн разных частотных диапазонов можно почитать, например, .
  2. Позволяет использовать антенны малого размера, ведь размер антенны должен быть пропорционален длине волны.
  3. Позволяет избежать интерференции с другими радиосигналами.
Передаваемый в сетях WiMax поток данных соответствует частоте в районе 11 кГц. Если мы попробуем передавать этот низкочастотный сигнал по воздуху, нам понадобится антенна следующих размеров:


Антенна длинной 24 километра не кажется достаточно удобной в использовании.
Если же мы будем передавать этот сигнал наложенным на несущую частоту в 2.5 ГГц (частота используемая в Yota WiMax), то нам понадобится антенна длиной 12 см.

Аналоговая модуляция.

Прежде чем перейти непосредственно к цифровой модуляции, приведу картинку, иллюстрирующую аналоговую AM (амплитудную) и FM (частотную) модуляцию, которая освежит у многих школные познания:


исходный сигнал


AM (амплитудная модуляция)


FM (частотная модуляция)

Цифровая модуляция и ее типы.

В цифровой модуляции аналоговый несущий сигнал модулируется цифровым битовым потоком.
Существуют три фундаментальных типа цифровой модуляции (или шифтинга) и один гибридный:
  1. ASK – Amplitude shift keying (Амплитудная двоичная модуляция).
  2. FSK – Frequency shift keying (Частотая двоичная модуляция).
  3. PSK – Phase shift keying (Фазовая двоичная модуляция).
  4. ASK/PSK.
Упомяну, что существует традиция в русской терминологии радиосвязи использовать для модуляции цифровым сигналом термин «манипуляция».

В случае амплитудного шифтинга амплитуда сигнала для логического нуля может быть (например) в два раза меньше логической и единицы.
Частотная модуляция похожим образом представляет логическую единицу интервалом с большей частотой, чем ноль.
Фазовый шифтинг представляет «0» как сигнал без сдвига, а «1» как сигнал со сдвигом.
Да, тут мы как раз имеем дело со «сдвигом по фазе»:)
Каждая из схем имеет свои сильные и слабые стороны.
  • ASK хороша с точки зрения эффективности использования полосы частот, но подвержена искажениям при наличии шума и недостаточно эффективна с точки зрения потребляемой мощности.
  • FSK – с точностью до наоборот, энергетически эффективна, но не эффективно использует полосу частот.
  • PSK – хороша в обоих аспектах.
  • ASK/PSK – комбинация двух схем. Она позволяет еще лучше использовать полосу частот.
Самая простая PSK схема (показанная на рисунке) имеет собственное название - Binary phase-shift keying. Используется единственный сдвиг фазы между «0» и «1» - 180 градусов, половина периода.
Существуют также QPSK и 8-PSK:
QPSK использует 4 различных сдвига фазы (по четверти периода) и может кодировать 2 бита в символе (01, 11, 00, 10). 8-PSK использует 8 разных сдвигов фаз и может кодировать 3 бита в символе.

Одна из частных реализаций схемы ASK/PSK которая называется QAM - Quadrature Amplitude Modulation (квадратурная амплитудная модуляция (КАМ). Это метод объединения двух AM-сигналов в одном канале. Он позваляет удвоить эффективную пропускную способность. В QAM используется две несущих с одинаковой частотой но с разницей в фазе на четверть периода (отсюда и возникает слово квадратура). Более высокие уровни QAM строятся по тому же принципы, что и PSK. Если вас интересуют детали, вы без труда можете их найти в сети.
Теоретическая эффективность использования полосы пропускания:
Формат Эффективность (бит/с/Гц)
BPSK 1
QPSK 2
8-PSK 3
16-QAM 4
32-QAM 5
64-QAM 6
256-QAM 8

Чем сложнее схема модуляции, тем более пагубное воздействие на нее оказывают искажения при передаче, и тем меньше расстояние от базовой станции, на котором сигнал может быть успешно принят.
Теоретически возможны PSK и QAM схемы еще более высокого уровня, но на практике при их использовании возникает слишком большое количество ошибок.
Теперь, когда мы рассмотрели основные моменты, можно написать какие схемы модуляции применяются в сетях WiMax.

Модуляция сигнала в сетях WiMax.

В WiMax используется «динамическая адаптивная модуляция», которая позволяет базовой станции делать выбор между пропускной способностью и максимальным расстоянием до приемника. Чтобы увеличить дальность, базовая станция может переключиться между 64-QAM, 16-QAM и QPSK.

Заключение.

Я надеюсь, что у меня получилось соблюсти баланс между популярностью изложения и техничностью содержания. Если данная статья окажется востребованной, я продолжу работать в этом направлении. Технология WiMax имеет множество нюансов, о которых можно рассказать.

где A и φ 0 – постоянные, ω – несущая частота.

Информация кодируется фазой φ(t) . Так как при когерентной демодуляции в приемнике имеется восстановленная несущая s C (t) = Acos(ωt +φ 0) , то путем сравнения сигнала (2) с несущей вычисляется текущий сдвиг фазы φ(t) . Изменение фазы φ(t) взаимнооднозначно связано с информационным сигналом c(t).

Двоичная фазовая модуляция (BPSK – BinaryPhaseShiftKeying)

Множеству значений информационного сигнала {0,1} ставится в однозначное соответствие множество изменений фазы {0, π}. При изменении значения информационного сигнала фаза радиосигнала изменяется на 180º. Таким образом, сигнал BPSK можно записать в виде

Следовательно, s (t )= A ⋅2(c (t )-1/2)cos(ωt + φ 0) .Таким образом, для осуществленияBPSK модуляции достаточно умножить сигнал несущей на информационный сигнал, который имеет множество значений {-1,1}. На выходе baseband-модулятора сигналы

I (t)=A ⋅2(c (t )-1/2), Q(t)=0

Временная форма сигнала и его созвездие показаны на рис.3.

Рис. 12.Временная форма и сигнальное созвездие сигнала BPSK:a– цифровое сообщение; б – модулирующий сигнал; в – модулированное ВЧ-колебание; г – сигнальное созвездие

Квадратурная фазовая модуляция (QPSK – QuadraturePhaseShiftKeying)

Квадратурная фазовая модуляция является четырехуровневой фазовой модуляцией (M=4), при которой фаза высокочастотного колебания может принимать 4 различных значения с шагом, кратным π / 2 .

Соотношение между сдвигом фазы модулированного колебания из множества {±π / 4,±3π / 4} и множеством символов цифрового сообщения {00, 01, 10, 11} устанавливается в каждом конкретном случае стандартом на радиоканал и отображается сигнальным созвездием, аналогичным рис.4. Стрелками показаны возможные переходы из одного фазового состояния в другое.

Рис. 13. Сигнальное созвездие модуляции QPSK

Из рисунка видно, что соответствие между значениями символов и фазой сигнала установлено таким образом, что в соседних точках сигнального созвездия значения соответствующих символов отличаются лишь в одном бите. При передаче в условиях шума наиболее вероятной ошибкой будет определение фазы соседней точки созвездия. При указанном кодировании, несмотря на то, что произошла ошибка в определении значения символа, это будет соответствовать ошибке в одном (а не двух) бите информации. Таким образом, достигается снижение вероятности ошибки на бит. Указанный способ кодирования называется кодом Грея.

Многопозиционная фазовая модуляция (M-PSK)

M-PSK формируется, как и другие многопозиционные виды модуляции, путем группировки k = log 2 M бит в символы и введением взаимно-однозначного соответствия между множеством значений символа и множеством значений сдвига фазы модулированного колебания. Значения сдвига фазы из множества отличаются на одинаковую величину. Для примера на рис.4 приведено сигнальное созвездие для 8-PSK с кодированием Грея.

Рис. 14. Сигнальное созвездие модуляции 8-PSK

Амплитудно-фазовые виды модуляции (QAM)

Очевидно, для кодирования передаваемой информации можно использовать не один параметр несущего колебания, а два одновременно.

Минимальный уровень символьных ошибок будет достигнут в случае, если расстояние между соседними точками в сигнальном созвездии будет одинаковым, т.е. распределение точек в созвездии будет равномерным на плоскости. Следовательно, сигнальное созвездие должно иметь решетчатый вид. Модуляция с подобным видом сигнального созвездия называется квадратурной амплитудной модуляцией (QAM – QuadratureAmplitudeModulation).

QAM является многопозиционной модуляцией. При M=4 она соответствует QPSK, поэтому формально считается для QAM M ≥ 8 (т.к. число бит на символ k = log 2 M ,k∈N , то M может принимать только значения степеней 2: 2, 4, 8, 16 и т.д.). Для примера на рис.5 приведено сигнальное созвездие 16-QAM с кодированием Грея.

Рис. 15. Сигнальное созвездие модуляции 16 –QAM

Частотные виды модуляции (FSK, MSK, M-FSK, GFSK, GMSK).

В случае осуществления частотной модуляции параметром несущего колебания – носителем информации – является несущая частота ω(t) . Модулированный радиосигнал имеет вид:

s(t)= Acos(ω(t)t +φ 0)= Acos(ω c t +ω d c(t)t +φ 0)=

Acos(ω c t +φ 0) cos(ω d c(t)t) − Asin(ω c t+φ 0)sin(ω d c(t)t),

где ω c – постоянная центральная частота сигнала, ω d – девиация (изменение) частоты, c(t) –информационный сигнал, φ 0 –начальная фаза.

В случае, если информационный сигнал имеет 2 возможных значения, имеет место двоичная частотная модуляция (FSK – FrequencyShiftKeying). Информационный сигнал в (4) является полярным, т.е. принимает значения {-1,1}, где -1 соответствует значению исходного (неполярного) информационного сигнала 0, а 1 – единице. Таким образом, при двоичной частотной модуляции множеству значений исходного информационного сигнала {0,1} ставится в соответствие множество значений частоты модулированного радиосигнала {ω c −ω d ,ω c +ω d } . Вид сигнала FSK изображен на рис.1.11.

Рис. 16. Сигнал FSK: а – информационное сообщение; б- модулирующий сигнал; в – модулирование ВЧ-колебание

Из (4) следует непосредственная реализация FSK-модулятора: сигналы I(t) и Q(t) имеют вид: I (t) = Acos(ω d c(t)t) , Q(t) = Asin(ω d c(t)t) . Так как функции sin и cos принимают значения в интервале [-1..1], то сигнальное созвездие сигнала FSK – окружность с радиусом A.

В продолжение темы:
Устройства

HI-END- МИФЫ И РЕАЛЬНОСТЬ В. Костин Салон AUDIO VIDEO январь 1998 Вы читаете статью одного из старейших конструкторов ламповых усилителей. Первый промышленный образец...

Новые статьи
/
Популярные