PPPoE - что это? Как настроить подключение PPPoE. Протокол управления канала связи ppp (lcp)

Ошибка 734: Протокол управления PPP-связью был прерван.

Описание ошибки 734

Ошибка 734 появляется при попытке подключения по высокоскоростному подключению PPP. Ошибка появляется в следствии неправильно настроенного подключения. Обычно проблема возникает по причине того, что провайдер не использует шифрование, а настройки Вашего подключения, его требуют.

Устранение ошибки 734

Давайте попробуем устранить ошибку 734 на примере Windows 7 или 8. Для этого вам нужно попасть в. Это можно сделать несколькими способами, но мы пойдем к нему через «Панель управления» . Для того чтобы ее открыть, нажмите сочетание клавиш + и в открывшемся окне введите команду control .

Далее нажмите кнопку в окне или кнопку на клавиатуре. Перед вами откроется окно «Панели управления». Если вы его открыли впервые, тогда переключите вид на «Крупные значки». Это позволит быстрее найти нужный апплет. Хотя это личное дело каждого — кто как привык. Итак перед нами куча значков панели, и мы ищем среди них «Центр управления сетями и общим доступом» и открываем его.

PPP (сетевой протокол)

PPP (англ. Point-to-Point Protocol ) - двухточечный протокол канального уровня (Data Link) сетевой модели OSI . Обычно используется для установления прямой связи между двумя узлами сети, причем он может обеспечить аутентификацию соединения, шифрование (с использованием ECP, RFC 1968) и сжатие данных. Используется на многих типах физических сетей: нуль-модемный кабель, телефонная линия, сотовая связь и т. д.

Часто встречаются подвиды протокола PPP такие, как Point-to-Point Protocol over Ethernet (PPPoE), используемый для подключения по Ethernet, и иногда через DSL; и Point-to-Point Protocol over ATM (PPPoA), который используется для подключения по ATM Adaptation Layer 5 (AAL5), который является основной альтернативой PPPoE для DSL .

PPP представляет собой целое семейство протоколов: протокол управления линией связи (LCP), протокол управления сетью (NCP), протоколы аутентификации (PAP , CHAP), многоканальный протокол PPP (MLPPP).

Основные характеристики

PPP протокол был разработан на основе HDLC и дополнен некоторыми возможностями, которые до этого встречались только в проприетарных протоколах.

Автоматическая настройка

После того, как соединение было установлено, поверх него может быть настроена дополнительная сеть. Обычно, используется Internet Protocol Control Protocol (IPCP), хотя Internetwork Packet Exchange Control Protocol (IPXCP) и AppleTalk Control Protocol (ATCP) были когда-то популярны. Internet Protocol Version 6 Control Protocol (IPv6CP) получит большее распространение в будущем, когда IPv6 заменит IPv4 как основной протокол сетевого уровня.

Многопротокольная поддержка

PPP позволяет работать нескольким протоколам сетевого уровня на одном канале связи. Другими словами, внутри одного PPP-соединения могут передаваться потоки данных различных сетевых протоколов ( , Novell IPX и т. д.), а также данные протоколов канального уровня локальной сети. Для каждого сетевого протокола используется Network Control Protocol (NCP) который его конфигурирует (согласовывает некоторые параметры протокола).

Обнаружение закольцованных связей

PPP обнаруживает закольцованные связи, используя особенность, включающую magic numbers. Когда узел отправляет PPP LCP сообщения, они могут включать в себя магическое число. Если линия закольцована, узел получает сообщение LCP с его собственным магическим числом вместо получения сообщения с магическим числом клиента.

Наиболее важные особенности

  • Link Control Protocol устанавливает и завершает соединения, позволяя узлам определять настройки соединения. Также он поддерживает и байто-, и бито-ориентированные кодировки.
  • Network Control Protocol используется для определения настроек сетевого уровня, таких как сетевой адрес или настройки сжатия, после того как соединение было установлено.

Конфигурационные опции PPP

Так как в PPP входит LCP протокол, то можно управлять следующими LCP параметрами:

  • Аутентификация . RFC 1994 описывает Challenge Handshake Authentication Protocol (CHAP), который является предпочтительным для проведения аутентификации в PPP, хотя Password Authentication Protocol (PAP) иногда еще используется. Другим вариантом для аутентификации является Extensible Authentication Protocol (EAP).
  • Сжатие . Эффективно увеличивает пропускную способность PPP соединения, за счет сжатия данных в кадре. Наиболее известными алгоритмами сжатия PPP кадров являются Stacker и Predictor.
  • Обнаружение ошибок . Включает Quality-Protocol и помогает выявить петли обратной связи посредством Magic Numbers RFC 1661 .
  • Многоканальность . Multilink PPP (MLPPP, MPPP, MLP) предоставляет методы для распространения трафика через несколько физических каналов, имея одно логическое соединение. Этот вариант позволяет расширить пропускную способность и обеспечивает балансировку нагрузки.

PPP кадр

Каждый кадр PPP всегда начинается и завершается флагом 0x7E. Затем следует байт адреса и байт управления, которые тоже всегда равны 0xFF и 0x03 соответственно. В связи с вероятностью совпадения байтов внутри блока данных с зарезервированными флагами, существует система автоматической корректировки «проблемных» данных с последующим восстановлением.

Поля «Флаг», «Адрес» и «Управление» (заголовок кадра HDLC) могут быть опущены и не передаваться, но это если PPP в процессе конфигурирования (используя LCP), договорится об этом. Если PPP инкапсулирован в L2TP -пакеты, то поле «Флаг» не передается.

Тип кадра данных в PPP

Поле «Данные», PPP кадра, в свою очередь разбиты ещё на два поля: флаг протокола (который определяет тип данных до конца кадра), и сами данные.

  • Флаги протокола от 0x0XXX до 0x3XXX идентифицируют протоколы сетевого уровня. Например, популярному протоколу соответствует флаг 0x0021, а Novell IPX - 002B.
  • Флаги протокола от 0x4XXX до 0x7XXX идентифицируют протоколы с низким уровнем трафика.
  • Флаги протокола от 0x8XXX до 0xBXXX идентифицируют протокол управления сетью (NCP).
  • Флаги протокола от 0xCXXX до 0xEXXX идентифицируют управляющие протоколы. Например, 0xC021 обозначает, что кадр содержит данные протокола управления соединением LCP .

Активации канала PPP и его фазы

Фазы PPP по RFC 1661 указаны ниже:

  • Link Dead . Эта фаза наступает, когда связь нарушена, либо одна из сторон указала не подключаться (например, пользователь завершил модемное соединение.)
  • Link Establishment Phase . В данной фазе проводится настройка Link Control. Если настройка была успешной, управление переходит в фазу аутентификации, либо в фазу Network-Layer Protocol, в зависимости от того, требуется ли аутентификация.
  • Authentication Phase . Данная фаза является необязательной. Она позволяет сторонам проверить друг друга перед установкой соединения. Если проверка успешна, управление переходит в фазу Network-Layer Protocol.
  • Network-Layer Protocol Phase . В данной фазе вызывается NCP для желаемого протокола. Например, IPCP используется для установки IP сервисов. Передача данных по всем успешно установленным протоколам также проходит в этой фазе. Закрытие сетевых протоколов тоже включается в данную фазу.
  • Link Termination Phase . Эта фаза закрывает соединение. Она вызывается в случае ошибок аутентификации, если было настолько много ошибок контрольных сумм, что обе стороны решили закрыть соединение, если соединение неожиданно оборвалось, либо если пользователь отключился. Данная фаза пытается закрыть все настолько аккуратно, насколько возможно в данных обстоятельствах.

Документы RFC

Протокол PPP определен в RFC 1661 (The Point-to-Point Protocol, июль 1994). Ряд соответствующих RFC, были написаны чтобы определить, как различные сетевые протоколы, включая TCP/IP , DECnet, AppleTalk , IPX и другие, работают с PPP.

  • RFC 1661 , Standard 51, Протокол точка-точка (PPP)
  • RFC 1662 , Standard 51, Использование HDLC в разработке PPP
  • RFC 5072 , IPv6 и PPP

Примечания

См. также

  • PLIP (англ.) русск.
  • Authentication (Аутентификация). Соединённые маршрутизаторы обмениваются сообщениями проверки подлинности. Доступны два варианта аутентификации: на основе протокола PAP и на основе протокола CHAP.
  • Compression (Сжатие). Эта функция повышает эффективную пропускную способность подключений PPP, уменьшая объём данных в кадре, передаваемом по каналу. Протокол распаковывает кадр в месте назначения. На маршрутизаторах Cisco доступно два протокола сжатия: Stacker и Predictor.
  • Error detection (Обнаружение ошибок) . Эта функция определяет состояния сбоя. Параметры Quality и Magic Number способствуют обеспечению надёжного беспетлевого канала передачи данных. Поле Magic Number используется для обнаружения каналов, в которых возникла петля. До тех пор, пока не будет успешно завершено согласование параметра настройки Magic-Number, должно передаваться нулевое значение этого параметра. Значения параметра Magic-Number генерируются случайным образом на каждом конце подключения.
  • PPP Callback (Обратный вызов PPP) . Обратный вызов PPP используется для повышения безопасности. При использовании этого параметра протокола LCP маршрутизатор Cisco может работать как клиент или сервер обратного вызова. Клиент выполняет начальный вызов, запрашивает у сервера обратный вызов и завершает начальный вызов. Маршрутизатор обратного вызова отвечает на начальный вызов и выполняет ответный вызов клиента на основе команд настройки. Используется команда ppp callback [ accept | request ] .

После настройки параметров соответствующее значение поля вставляется в поле параметра протокола LCP.

Команды базовой настройки PPP

Запуск PPP на интерфейсе

Для настройки PPP в качестве метода инкапсуляции, используемого последовательным интерфейсом, служит команда настройки интерфейсаencapsulation ppp .

В следующем примере активируется инкапсуляция PPP на интерфейсе serial 0/0/0.

R3# configure terminal

R3(config)# interface serial 0/0/0

R3(config-if)# encapsulation ppp

У команды encapsulation ppp нет аргументов. Помните, что если на маршрутизаторе Cisco не настроена инкапсуляция PPP, то по умолчанию для последовательных интерфейсов будет использоваться инкапсуляция HDLC.

На рисунке показаны маршрутизаторы R1 и R2, настроенные на использование на последовательных интерфейсах как адреса IPv4, так и адреса IPv6. PPP является инкапсуляцией уровня 2, поддерживающей различные протоколы уровня 3 протокола, включая IPv4 и IPv6.

Команды сжатия PPP

Настроить в протоколе «точка-точка» программное сжатие на последовательных интерфейсах можно после активирования инкапсуляции PPP. Поскольку в этом режиме вызывается процесс сжатия программным способом, он может повлиять на производительность системы. Если трафик уже состоит из сжатых файлов, таких как.zip, .tar или.mpeg, этой возможностью не следует пользоваться. На рисунке показан синтаксис командыcompress .

Для настройки сжатия при передаче по протоколу PPP введите следующие команды.

R3(config)# interface serial 0/0/0

R3(config-if)# encapsulation ppp

R3(config-if)# compress [ predictor | stac ]

Команда мониторинга качества канала PPP

Помните, что LCP обеспечивает дополнительный этап определения качества канала. На этом этапе LCP проверяет канал, чтобы определить, является ли качество канала достаточным для использования протоколов уровня 3.

Команда ppp quality percentage обеспечивает соответствие канала установленному требованию к качеству; в противном случае канал закрывается.

Процентная величина рассчитывается как для входящего, так и для исходящего направления. Качество канала в исходящем направлении рассчитывается путем сравнения общего числа отправленных пакетов и байтов с общим числом пакетов и байтов, полученных узлом назначения. Качество канала во входящем направлении рассчитывается путем сравнения общего числа полученных пакетов и байтов с общим числом пакетов и байтов, отправленных узлом назначения.

Если процентное выражение качества канала не поддерживается, то качество канала считается низким и канал отключается. В средстве наблюдения за качеством (LQM) реализован механизм задержки во времени, чтобы канал не подвергался последовательным активированиям и отключениям.

В следующем примере настройки осуществляется наблюдение за данными, переданными в канал, и обеспечивается предотвращение петель генерации кадров (см.рис).

R3(config)# interface serial 0/0/0

R3(config-if)# encapsulation ppp

R3(config-if)# ppp quality 80

Для отключения средства LQM используется команда no ppp quality .

Команды многоканального протокола PPP

Многоканальный протокол PPP (обозначается также MP, MPPP, MLP или Multilink) предоставляет метод распределения трафика между несколькими физическими каналами WAN. Многоканальный протокол PPP обеспечивает также фрагментацию и повторную сборку пакетов, надлежащее упорядочивание, возможность использования оборудования различных поставщиков и распределение нагрузки входящего и исходящего трафика.

MPPP позволяет фрагментировать пакеты и отправлять эти фрагменты одновременно по нескольким каналам «точка-точка» по одному и тому же удалённому адресу. В ответ на определённое пользователем пороговое значение нагрузки открываются несколько физических каналов. MPPP может измерить нагрузку только во входящем трафике или только в исходящем трафике, но не общую нагрузку обоих трафиков.

Настройка MPPP выполняется в два шага (см. рисунок).

Шаг 1. Создание многоканальной группы.

  • Многоканальный интерфейс создаётся командой interface multilink number .
  • В режиме настройки интерфейса многоканальному интерфейсу назначается IP-адрес. В этом примере как адрес IPv4, так и адрес IPv6 настроены на маршрутизаторах R3 и R4.
  • На интерфейсе запускается многоканальный PPP.
  • Интерфейсу назначается номер многоканальной группы.

Шаг 2. Назначение интерфейсов многоканальной группе.

На каждом интерфейсе, входящем в многоканальную группу, выполняются следующие настройки.

  • Активируется инкапсуляция PPP.
  • Активируется многоканальный PPP.
  • Производится привязка к группе посредством указания номера группы, настроенного в действии 1.

Для отключения многоканального PPP используется команда no ppp multilink .

Проверка настройки PPP

Для проверки правильности настройки инкапсуляции HDLC или PPP используется команда show interfaces serial . В выходных данных команды отображается настройка PPP (см. рис.).

После настройки HDLC в выходных данных команды show interfaces serial должна отобразиться строкаencapsulation HDL C . Если настроен протокол PPP, должны отобразиться также состояния протоколов LCP и NCP. Обратите внимание, что протоколы управления сетью IPCP и IPV6CP открыты для IPv4 и IPv6, поскольку на маршрутизаторах R1 и R2 установлены и адреса IPv4, и адреса IPv6.

На рис. показан список команд для проверки PPP.

Команда show ppp multilink проверяет, активирован ли многоканальный протокол PPP на R3 (см. рис. 3).

В выходных данных отражены интерфейс Multilink 1, имена узлов локальной и удалённой оконечных точек и последовательные интерфейсы, включённые в многоканальную группу.

Аутентификация PPP

PPP определяет расширяемый протокол LCP, позволяющий согласовывать протокол аутентификации для проверки подлинности собеседника, прежде чем разрешить протоколам сетевого уровня осуществлять передачу данных по каналу. В документе RFC 1334 для аутентификации определяются два протокола, PAP и CHAP (см. рисунок).

Протокол PAP (Password Authentication Protocol, «протокол аутентификации по паролю») - это очень простой двухэтапный процесс. В нём не используется шифрование. Имя пользователя и пароль отправляются в незашифрованном виде. При их получении разрешается установка подключения. У протокола CHAP (Challenge Handshake Authentication Protocol, «протокол аутентификации с запросом») более высокий уровень защиты, чем у PAP. В нём применяется трёхэтапный обмен совместно используемым секретным ключом.

Этап проверки подлинности сеанса PPP не является обязательным. Если он используется, собеседник проходит проверку подлинности после того, как LCP устанавливает канал и выбирает протокол аутентификации. Если он используется, проверка подлинности выполняется до начала этапа настройки протокола сетевого уровня.

Параметры аутентификации требуют ввода данных аутентификации вызывающей стороной. Это позволяет убедиться в том, что у пользователя есть разрешение сетевого администратора на выполнение вызова. Соединённые маршрутизаторы обмениваются сообщениями аутентификации.

Password Authentication Protocol (PAP)

Одна из многих функций протокола PPP состоит в выполнении аутентификации уровня 2 в дополнение к проверке подлинности, шифрованию, управлению доступом и общим процедурам обеспечения безопасности на других уровнях.

Инициализация PAP

Протокол PAP предоставляет простой метод подтверждения узла путём двухэтапного «рукопожатия». PAP - не интерактивный протокол. Если используется команда ppp authentication pap , имя пользователя и пароль можно отправить в виде одного пакета данных LCP вместо отправки сервером запроса на ввод имени для входа и ожидания ответа, как показано на рис. 1. После того, как PPP выполнит этап установления подключения, удалённый узел повторно отправляет пару имя пользователя-пароль по каналу до тех пор, пока принимающий узел не подтвердит её или не завершит подключение.

Завершение PAP

На принимающем узле имя пользователя-пароль проверяется сервером аутентификации, который либо разрешает, либо или отклоняет подключение. Сообщение о принятии или отклонении возвращаются инициатору запроса, как показано на рис. 2.

PAP не является сильным протоколом аутентификации. С помощью РАР пароли отправляются в незашифрованном виде, так что защита от атак повторной передачи или повторяющихся атак методом проб и ошибок отсутствует. Удалённый узел управляет частотой и временем попыток входа в сеть.

Тем не менее, существуют ситуации, в которых использование PAP оправдано. Например, несмотря на свои недостатки, PAP можно использовать в следующих условиях.

  • Большой парк установленных клиентских приложений, которые не поддерживают протокол CHAP
  • Несовместимость между реализациями CHAP от различных поставщиков

Инкапсуляция и процесс аутентификации PPP

Схема на рис. поясняет процесс аутентификации PPP при выполнении настройки PPP. На схеме приведён визуальный пример логики принятия решений протоколом PPP.

Например, если входящий запрос PPP не требует проверки подлинности, PPP переходит к следующему уровню. Если входящему запросу PPP требуется проверка подлинности, запрос может пройти проверку подлинности с помощью либо локальной базы данных, либо сервера безопасности. Как показано на схеме, после успешной аутентификации процесс переходит на новый уровень, а при непрохождении проверки подлинности подключение завершается, и входящий запрос PPP игнорируется.

Проследите за этапами на рис., чтобы ознакомиться с процессом установления маршрутизатором R1 прошедшего аутентификацию CHAP подключения РРР к маршрутизатору R2.

Шаг 1. Сначала R1 с использованием LCP выполняет согласование подключения канала с маршрутизатором R2, и две системы договариваются использовать аутентификацию CHAP во время согласования PPP LCP.

Шаг 2. R2 генерирует идентификатор и случайное число, затем отправляет маршрутизатору R1 эти данные и своё имя пользователя в качестве контрольного пакета CHAP.

Шаг 3. Маршрутизатор R1 использует имя пользователя претендента (R2) и на основе этого имени с помощью перекрёстных ссылок ищет соответствующий пароль в своей локальной базе данных. Затем R1 генерирует хэш-код MD5, используя имя пользователя маршрутизатора R2, идентификатор, случайное число и совместно используемый секретный пароль. В этом примере совместно используемый секретный пароль - boardwalk.

Шаг 4. Затем маршрутизатор R1 передает маршрутизатору R2 идентификатор контрольного пакета, значение хэш-кода и своё имя пользователя (R1).

Шаг 5. R2 генерирует своё собственное значение хэш-кода с использованием идентификатора, совместно используемого секретного пароля и случайного числа, изначально отправлявшегося маршрутизатору R1.

Шаг 6. R2 сравнивает своё значение хеш-кода со значением, отправленным маршрутизатором R1. Если значения совпадают, то R2 отправляет маршрутизатору R1 ответ об установлении канала.

Если запрос не прошёл проверку подлинности, формируется пакет CHAP с информацией об ошибке, состоящий из следующих компонентов:

  • 04 = тип сообщения CHAP об ошибке
  • id = копируется из пакета ответа

Совместно используемый секретный пароль должен быть идентичным на обоих маршрутизаторах R1 и R2.

Настройка аутентификации PPP

Для указания порядка, в котором протоколы CHAP и PAP запрашиваются на интерфейсе, используется команда настройки интерфейса ppp authentication , как показано на рисунке. Для отключения аутентификации используется вариант этой команды с отрицанием (no ).

После включения аутентификации CHAP, PAP или обеих локальный маршрутизатор, прежде чем разрешить передачу потока данных, запрашивает у удалённого устройства доказательства его подлинности. Для этого выполняются следующие действия.

  • Аутентификация PAP запрашивает у удалённого устройства имя и пароль, чтобы сравнить их с соответствующей записью в локальной базе данных имён пользователей или в удалённой базе данных TACACS/TACACS+.
  • Аутентификация CHAP отправляет удалённому устройству контрольный запрос. Удалённое устройство должно зашифровать контрольное значение с использованием совместно используемого секретного ключа и в ответном сообщении вернуть локальному маршрутизатору зашифрованное значение и своё имя. Локальный маршрутизатор использует имя удалённого устройства для поиска соответствующего секретного ключа в локальной базе данных имён пользователей или в удалённой базе данных TACACS/TACACS+. Он использует найденный секретный ключ для шифрования исходного контрольного значения и проверяет зашифрованные значения на тождественность.

Примечание . TACACS - выделенный сервер аутентификации, авторизации и учета (AAA), используемый для проверки подлинности пользователей. Клиенты TACACS отправляют запрос серверу аутентификации TACACS. Сервер выполняет проверку подлинности пользователя, авторизует действия пользователя и отслеживает выполненные пользователем действия.

Можно включить PAP, CHAP или оба протокола. Если включены оба метода, во время согласования связи запрашивается метод, указанный первым. Если удалённый узел предлагает использовать второй метод или просто отказывается использовать первый метод, предпринимается попытка использовать второй метод. Некоторые удалённые устройства поддерживают только CHAP, а некоторые - только PAP. Порядок, в котором указываются методы, основывается на соображениях относительно способности удалённого устройства правильно провести согласование соответствующего метода, а также на соображениях безопасности канала данных. Имена пользователей PAP и пароли отправляются в виде открытых строк и могут быть перехвачены и повторно использованы. В протоколе CHAP удалось устранить большинство известных брешей в защите.

Настройка PPP с аутентификацией

В таблице описана процедура настройки инкапсуляции PPP и протоколы аутентификации PAP/CHAP. Важно правильно выполнить настройку, поскольку PAP и CHAP используют эти параметры для аутентификации.

Настройка аутентификации PAP


На рис. приведён пример настройки двухсторонней аутентификации PAP. Каждый из маршрутизаторов и проводит аутентификацию, и проходит её, поэтому соответствующие команды аутентификации PAP зеркально отражают друг друга. Отправляемые каждым из маршрутизаторов имя пользователя и пароль PAP должны совпадать с указанными в командеusername name password password другого маршрутизатора.

Протокол PAP предоставляет простой метод подтверждения узла путём двухэтапного «рукопожатия». Это выполняется только после первоначального создания канала. Имя узла на одном маршрутизаторе должно совпадать с именем пользователя, настроенным для PPP другим маршрутизатором. Пароли также должны совпадать. Параметры, передающие имя пользователя и пароль, укажите в команде ppp pap sent-username name password password .

Настройка аутентификации CHAP

CHAP периодически проверяет подлинность удалённого узла с использованием трёхэтапного рукопожатия. Имя узла на одном маршрутизаторе должно совпадать с именем пользователя, настроенным другим маршрутизатором. Пароли также должны совпадать. Процедура выполняется после первоначального создания канала и может повторяться в любой момент времени после установления связи. На рис. приведён пример настройки CHAP.

Лекция 10. HDLC и PPP – протоколы управления каналом

Для создания надежного механизма передачи данных между двумя станциями необходимо определить протокол, который позволит принимать и передавать различные данные по каналам связи. Протоколы представляют собой просто набор условий (правил), которые регламентируют формат и процедуры обмена информацией между двумя или несколькими независимыми устройствами или процессами. Протокол имеет три важнейших элемента: синтаксис, семантику и синхронизацию. Синтаксис протокола определяет поля; например, может быть 16-байтовое поле для адресов, 32-байтовое поле для контрольных сумм и 512 байт на пакет. Семантика протокола придает этим полям значение: например, если адресное поле состоит из всех адресов, это «широковещательный» пакет. Синхронизация – количество битов в секунду – это скорость передачи данных. Она важна не только на самых низких уровнях протокола, но и на высших.

Протокол канального уровня обеспечивает следующие функции:

Управление передачей данных через физический канал организованный на первом уровне;

Проверка информационного канала;

Формирование кадра, т. е. окаймление передаваемых данных служеб- ными символами данного уровня;

Контроль данных;

Обеспечение прозрачности информационного канала;

Управление каналом передачи данных.

Данный протокол занимает второй уровень в многоуровневой организации управления сетью.

Обзор протокола HDLC. HDLC (High-Level Data Link Control) – протокол высокоуровнего управления каналом передачи данных, канального уровня (бит-ориентированный) модели ISO и является базовым для построения других протоколов канального уровня (SDLC, LAP, LAPB, LAPD, LAPX и LLC).

Основные принципы работы протокола HDLC: режим логического соединения, контроль искаженных и потерянных кадров с помощью метода скользящего окна, управление потоком кадров с помощью команд RNR (приемник не готов) и RR (приемник готов).

Существует три типа станций HDLC.

Первичная станция (ведущая) управляет звеном передачи данных (каналом). Несет ответственность за организацию потоков передаваемых данных и восстановление работоспособности звена передачи данных. Эта станция передает кадры команд вторичным станциям, подключенным к каналу. В свою очередь она получает кадры ответа от этих станций. Если канал является многоточечным, главная станция отвечает за поддержку отдельного сеанса связи с каждой станцией, подключенной к каналу.

Вторичная станция (ведомая) работает как зависимая по отношению к первичной станции (ведущей). Она реагирует на команды, получаемые от первичной станции, в виде ответов. Поддерживает только один сеанс, а именно только с первичной станцией. Вторичная станция не отвечает за управление каналом.

Комбинированная станция сочетает в себе одновременно функции первичной и вторичной станции. Передает как команды, так и ответы и получает команды и ответы от другой комбинированной станции, с которой поддерживает сеанс.

Три логических состояния, в которых могут находиться станции в процессе взаимодействия друг с другом.

Состояние логического разъединения (LDS). В этом состоянии станция не может вести передачу или принимать информацию. Если вторичная станция находится в нормальном режиме разъединения (NDM), она может принять кадр только после получения явного разрешения на это от первичной станции. Если станция находится в асинхронном режиме разъединения (ADM), вторичная станция может инициировать передачу без получения на это явного разрешения, но кадр должен быть единственным кадром, который указывает статус первичной станции. Условиями перехода в состояние LDS могут быть начальное или повторное (после кратковременного отключения) включение источника питания; ручное управление установлением в исходное состояние логических цепей различных устройств станции и определяется на основе принятых системных соглашений.

Состояние инициализации (IS). Это состояние используется для передачи управления на удаленную вторичную /комбинированную станцию, ее коррекции в случае необходимости, а также для обмена параметрами между удаленными станциями в звене передачи данных, используемыми в состоянии передачи информации.

Состояние передачи информации (ITS). Вторичной, первичной и комбинированным станциям разрешается вести передачу и принимать информацию пользователя. В этом состоянии станция может находиться в режимах NRM, ARM и ABM, которые описаны ниже.

HDLC обеспечивает следующие три режима передачи:

– режим нормальной ответной реакции (NRM). При этом вторичные узлы не могут иметь связи с первичным узлом до тех пор, пока первичный узел не даст разрешения;

– режим асинхронной ответной реакции (ARM). Этот режим передачи позволяет вторичным узлам инициировать связь с первичным узлом без получения разрешения;

– асинхронный сбалансированный режим (ABM). В режиме АВМ появляется «комбинированный» узел, который, в зависимости от ситуации, может действовать как первичный или как вторичный узел.

На канальном уровне используется термин кадр для обозначения независимого объекта данных, передаваемого от одной станции к другой. Кадр в протоколе HDLC имеет структуру, представленную на рисунке 10.1.

N(S) – порядковый номер передаваемого кадра, N(R) – порядковый номер принимаемого кадра, P/F – бит опроса / окончания

Рисунок 10.1 – Формат кадра и управляющего поля HDLC

Бит-ориентированный протокол предусматривает передачу информацию в виде потока битов, не разделяемых на байты. Поэтому для разделения кадров используются специальные последовательности – флаги.

Все кадры должны начинаться и заканчиваться полями флага «01111110». Станции, подключенные к каналу, постоянно контролируют двоичную последовательность флага. Флаги могут постоянно передаваться по каналу между кадрами HDLC. Для индексации исключительной ситуации в канале могут быть посланы семь подряд идущих единиц. Пятнадцать или большее число единиц поддерживают канал в состоянии покоя. Если принимающая станция обнаружит последовательность битов, не являющихся флагом, она тем самым уведомляется о начале кадра, об исключительной (с аварийным завершением) ситуации или ситуации покоя канала. При обнаружении следующей флаговой последовательности станция будет знать, что поступил полный кадр.



Адресное поле определяет первичную или вторичную станции, участвующие в передаче конкретного кадра. Каждой станции присваивается уникальный адрес. В несбалансированной системе адресные поля в командах и ответах содержат адрес вторичной станции. В сбалансированных конфигурациях командный кадр содержит адрес получателя, а кадр ответа содержит адрес передающей станции.

Управляющее поле задает тип команды или ответа, а так же порядковые номера, используемые для отчетности о прохождении данных в канале между первичной и вторичной станциями. Формат и содержание управляющего поля (рис. 1) определяют кадры трех типов: информационные (I), супервизорные (S) и ненумерованные (U).

Информационный формат (I – формат) используется для передачи данных конечных пользователей между двумя станциями.

Супервизорный формат (S – формат) выполняет управляющие функции: подтверждение (квитирование) кадров, запрос на повторную передачу кадров и запрос на временную задержку передачи кадров. Фактическое использование супервизорного кадра зависит от режима работы станции (режим нормального ответа, асинхронный сбалансированный режим, асинхронный режим ответа).

Ненумерованный формат (U – формат) также используется для целей управления: инициализации или разъединения, тестирования, сброса и идентификации станции и т.д. Конкретный тип команды и ответа зависит от класса процедуры HDLC.

Информационное поле содержит действительные данные пользователя. Информационное поле имеется только в кадре информационного формата. Его нет в кадре супервизорного или ненумерованного формата. [Примечание: кадры «UI – ненумерованная информация» и «FRMR – Неприем кадра» ненумерованного формата имеют информационное поле].

Поле CRC (контрольная последовательность кадра) используется для обнаружения ошибок передачи между двумя станциями. Передающая станция осуществляет вычисления над потоком данных пользователя, и результат этого вычисления включается в кадр в качестве поля CRC. В свою очередь, принимающая станция производит аналогичные вычисления и сравнивает полученный результат с полем CRC. Если имеет место совпадение, велика вероятность того, что передача произошла без ошибок. В случае несовпадения, возможно, имела место ошибка передачи, и принимающая станция посылает отрицательное подтверждение, означающее, что необходимо повторить передачу кадра. Вычисление CRC называется циклическим контролем по избыточности и использует некоторый производящий полином в соответствии с рекомендацией МККТТ V.41. Этот метод позволяет обнаруживать всевозможные кортежи ошибок длиной не более 16 разрядов, вызываемые одиночной ошибкой, а также 99,9984% всевозможных более длинных кортежей ошибок.

Сегодня протокол HDLC на выделенных каналах вытеснил протокол «точка – точка», Point-to-Point Protocol, PPP.

Дело в том, что одна из основных функций протокола HDLC – это восстановление искаженных и утерянных кадров. Действительно, применение протокола HDLC обеспечивает снижение вероятности искажения бита (BER) с 10 -3 , что характерно для территориальных аналоговых каналов, до 10 -9.

Однако сегодня популярны цифровые каналы, которые и без внешних процедур восстановления кадров обладают высоким качеством (величина BER составляет10 -8 – 10 -9). Для работы по такому каналу восстановительные функции протокола HDLC не нужны. При передаче по аналоговым выделенным каналам современные модемы сами применяют протоколы семейства HDLC. Поэтому использование HDLC на уровне маршрутизатора или моста становится неоправданным.

Протокол PPP. Протокол PPP стал фактическим стандартом для глобальных линий связи при соединении удаленных клиентов с серверами и для образования соединений между маршрутизаторами в корпоративной сети. При разработке протокола PPP за основу был взят формат кадров HDLC и дополнен собственными полями. Поля протокола PPP вложены в поле данных кадра HDLC. Позже были разработаны стандарты, использующие вложение кадра PPP в кадры Frame relay и других протоколов глобальных сетей.

Основное отличие РРР от других протоколов канального уровня состоит в том, что он добивается согласованной работы различных устройств с помощью переговорной процедуры, во время которой передаются различные параметры, такие как качество линии, протокол аутентификации и инкапсулируемые протоколы сетевого уровня. Переговорная процедура происходит во время установления соединения.

Протокол РРР основан на четырех принципах: переговорное принятие параметров соединения, многопротокольная поддержка, расширяемость протокола, независимость от глобальных служб.

Переговорное принятие параметров соединения. В корпоративной сети конечные системы часто отличаются размерами буферов для временного хранения пакетов, ограничениями на размер пакета, списком поддерживаемых протоколов сетевого уровня. Физическая линия, связывающая конечные устройства, может варьироваться от низкоскоростной аналоговой линии до высокоскоростной цифровой линии с различными уровнями качества обслуживания. Чтобы справиться со всеми возможными ситуациями, в протоколе РРР имеется набор стандартных установок, действующих по умолчанию и учитывающих все стандартные конфигурации. При установлении соединения два взаимодействующих устройства для нахождения взаимо- понимания пытаются сначала использовать эти установки. Каждый конечный узел описывает свои возможности и требования. Затем на основании этой информации принимаются параметры соединения, устраивающие обе стороны, в которые входят форматы инкапсуляции данных, размеры пакетов, качество линии и процедура аутентификации.

Протокол, в соответствии с которым принимаются параметры соединения, называется протоколом управления связью (LCP). Протокол, который позволяет конечным узлам договориться о том, какие сетевые протоколы будут передаваться в установленном соединении, называется протоколом управления сетевым уровнем (NCP). Внутри одного РРР-соедине- ния могут передаваться потоки данных различных сетевых протоколов.

Одним из важных параметров РРР-соединения является режим аутентификации. Для целей аутентификации РРР предлагает по умолчанию протокол РАР, передающий пароль по линии связи в открытом виде, или протокол CHAP, не передающий пароль по линии связи и поэтому обеспечивающий большую безопасность сети. Пользователям также разрешается добавлять и новые алгоритмы аутентификации. Дисциплина выбора алгоритмов компрессии заголовка и данных аналогична.

Многопротокольная поддержка – способность протокола РРР поддержи- вать несколько протоколов сетевого уровня – обусловила распространение РРР как стандарта де-факто. РРР работает со многими протоколами сетевого уровня, включая IP, Novell IPX, AppleTalk, DECnet, XNS, Banyan VINES и OSI, а также протоколами канального уровня локальной сети. Больше всего параметров устанавливается для протокола IP – IP-адрес узла, IP-адрес серверов DNS, использование компрессии заголовка IP-пакета и т. д.

Расширяемость протокола. Под расширяемостью понимается как возможность включения новых протоколов в стек РРР, так и возможность использования собственных протоколов пользователей вместо рекомендуемых в РРР по умолчанию. Это позволяет наилучшим образом настроить РРР для каждой конкретной ситуации.

Независимость от глобальных служб. Начальная версия РРР работала только с кадрами HDLC. Теперь в стек РРР добавлены спецификации, позволяющие использовать РРР в любой технологии глобальных сетей, например ISDN, Frame relay, Х.25, Sonet и HDLC.

Возникает вопрос – каким образом два устройства, ведущих переговоры по протоколу РРР, узнают о тех параметрах, которые они предлагают своему партнеру? Обычно у реализации протокола РРР есть некоторый набор параметров по умолчанию, которые и используются в переговорах. Тем не менее, каждое устройство (и программа, реализующая протокол РРР в операционной системе компьютера) позволяет администратору изменить параметры по умолчанию, а также задать параметры, которые не входят в стандартный набор. Например, IP-адрес для удаленного узла отсутствует в параметрах по умолчанию, но администратор может задать его для сервера удаленного доступа, после чего сервер будет предлагать его удаленному узлу.

Хотя протокол РРР и работает с кадром HDLC, но в нем отсутствуют процедуры контроля кадров и управления потоком протокола HDLC. Поэтому в РРР используется только один тип кадра HDLC – ненумерованный информационный. В поле управления такого кадра всегда содержится величина 03. Для исправления очень редких ошибок, возникающих в канале, необходимы протоколы верхних уровней – TCP, SPX, NetBUEl, NCP и т. п.

Одной из возможностей протокола РРР является использование нескольких физических линий для образования одного логического канала, так называемый транкинг каналов (общий логический канал может состоять из каналов разной физической природы. Например, один канал может быть образован в телефонной сети, а другой может являться виртуальным коммутируемым каналов сети frame relay). Эту возможность реализует дополнительный протокол, который носит название MLPPP (Multi Link РРР). Многие производители поддерживают такое свойство в своих маршрутизаторах и серверах удаленного доступа фирменным способом. Использование стандартного способа всегда лучше, так как он гарантирует совместимость оборудования разных производителей.

Основная литература: 2

Дополнительная литература: 7

Контрольные вопросы:

1. Для чего нужны протоколы управления каналом?

2. Какие функции обеспечивает протокол канального уровня?

3. Каковы основные принципы работы протокола HDLC?

4. Каковы основные принципы работы протокола РРР?

5. В чем отличие протоколов HDLC и РРР?

LCP обеспечивает метод организации, выбора конфигурации, поддержания и окончания работы канала с непосредственным соединением. Процесс LCP проходит через 4 четко различаемые фазы:

    Организация канала и согласование его конфигурации. Прежде чем может быть произведен обмен каких-либо дейтаграмм сетевого уровня (например, IP), LCP сначала должен открыть связь и согласовать параметры конфигурации. Эта фаза завершается после того, как пакет подтверждения конфигурации будет отправлен и принят.

    Определение качества канала связи. LCP обеспечивает факультативную фазу определения качества канала, которая следует за фазой организации канала и согласования его конфигурации. В этой фазе проверяется канал, чтобы определить, является ли качество канала достаточным для вызова протоколов сетевого уровня. Эта фаза является полностью факультативной. LСP может задержать передачу информации протоколов сетевого уровня до завершения этой фазы.

    Согласование конфигурации протоколов сетевого уровня. После того, как LСP завершит фазу определения качества канала связи, конфигурация сетевых протоколов может быть по отдельности выбрана соответствующими NCP, и они могут быть в любой момент вызваны и освобождены для последующего использования. Если LCP закрывает данный канал, он информирует об этом протоколы сетевого уровня, чтобы они могли принять соответствующие меры.

    Прекращение действия канала. LCP может в любой момент закрыть канал. Это обычно делается по запросу пользователя (человека), но может произойти и из-за какого-нибудь физического события, такого, как потеря носителя или истечение периода бездействия таймера.

Существует три класса пакетов LCP:

    Пакеты для организации канала связи. Используются для организации и выбора конфигурации канала.

    Пакеты для завершения действия канала. Используются для завершения действия канала связи.

    Пакеты для поддержания работоспособности канала. Используются для поддержания и отладки канала.

Эти пакеты используются для достижения работоспособности каждой из фаз LCP.

Isdn Библиографическая справка

Название сети Integrated Services Digital Network (ISDN) (Цифровая сеть с интегрированными услугами) относится к набору цифровых услуг, которые становятся доступными для конечных пользователей. ISDN предполагает оцифровывание телефонной сети для того, чтобы голос, информация, текст, графические изображения, музыка, видеосигналы и другие материальные источники могли быть переданы конечному пользователю по имеющимся телефонным проводам и получены им из одного терминала конечного пользователя. Сторонники ISDN рисуют картину сети мирового масштаба, во многом похожую на сегодняшнюю телефонную сеть, за тем исключением, что в ней используется передача цирфрового сигнала и появляются новые разнообразные услуги.

ISDN является попыткой стандартизировать абонентские услуги, интерфейсы пользователь/сеть и сетевые и межсетевые возможности. Стандартизация абонентских услуг является попыткой гарантировать уровень совместимости в международном масштабе. Стандартизация интерфейса пользователь/сеть стимулирует разработку и сбыт на рынке этих интерфейсов изготовителями, являющимися третьей участвующей стороной. Стандартизация сетевых и межсетевых возможностей помогает в достижении цели возможного объединения в мировом масштабе путем обеспечения легкости связи сетей ISDN друг с другом.

Применения ISDN включают быстродействующие системы обработки изображений (такие, как факсимиле Group 1V), дополнительные телефонные линии в домах для обслуживания индустрии дистанционного доступа, высокоскоростную передачу файлов и проведение видео конференций. Передача голоса несомненно станет популярной прикладной программой для ISDN.

Многие коммерческие сети связи начинают предлагать ISDN по ценам ниже тарифных. В Северной Америке коммерческие сети связи с коммутатором локальных сетей (Local-exchange carrier) (LEC) начинают обеспечивать услуги ISDN в качестве альтернативы соединениям Т1, которые в настоящее время выполняюут большую часть услуг "глобальной телефонной службы"(WATS) (wide-area telephone service) .

В продолжение темы:
Устройства

Мы с Вами познакомились с основными компьютерными терминами и определениями. Практически изучили назначение всех (почти) клавиш на клавиатуре конкретно на примерах. Не...

Новые статьи
/
Популярные