Первичные измерительные преобразователи. Параметрические измерительные преобразователи неэлектрических величин Типовые схемы включения параметрических измерительных преобразователей

ЛЕКЦИЯ 15.
Генераторные измерительные преобразователи
В генераторных преобразователях выходной величиной является ЭДС или заряд, функционально связанные с измеряемой неэлектрической величиной.
Термоэлектрические преобразователи (термопары) .
Основаны на термоэлектрическом эффекте, возникающем в цепи термопары. Эти преобразователи применяются для измерения температуры. Принцип действия термопары поясняется рис. 15.1,а, где изображена термоэлектрическая цепь, составленная из двух разнородных проводников А и В . Точки 1 и 2 соединения проводников называются спаями термопары. Если температуры t спаев 1 и 2 одинаковы, то ток в термоэлектрической цепи отсутствует. Если же температура одного из спаев (например, спая 1) выше, чем температура спая 2, то в цепи возникает термоэлектродвижущая сила (ТЭДС) Е , зависящая от разности температур спаев
Е = f (t 1 – t 2 ). (15.1)
Если поддерживать температуру спая 2 постоянной, то
Е = f (t 1 ).
Эту зависимость используют для измерения температуры с помощью термопар. Для измерения ТЭДС электроизмерительный прибор включают в разрыв спая 2 (рис. 15.1, б). Спай 1 называют горячим (рабочим) спаем, а спай 2 – холодным (концы 2 и 2’ называют свободными концами).
Чтобы ТЭДС термопары однозначно определялась температурой горячего спая, необходимо температуру холодного спая поддерживать всегда одинаковой.
Для изготовления электродов термопар используют как чистые металлы, так и специальные сплавы стандартизованного состава. Градуировочные таблицы для стандартных термопар составлены при условии равенства температуры свободных концов 0 о С. На практике не всегда удается поддерживать эту температуру. В таких случаях в показания термопары вводят поправку на температуру свободных концов. Существуют схемы для автоматического введения поправок.
Конструктивно термопары выполняются в виде двух изолированных термоэлектродов с рабочим спаем, получаемым способом сварки, помещенных в защитную арматуру, предохраняющую термопару от внешних воздействий и повреждений. Рабочие концы термопары выведены в головку термопары, снабженную зажимами для включения термопары в электрическую цепь.
В табл. 15.1 приведены характеристики термопар, выпускаемых промышленностью. Для измерения высоких температур применяют термопары ПП, ПР и ВР. Термопары из благородных металлов используют при измерении с повышенной точностью.
В зависимости от конструкции, термопары могут иметь тепловую инерцию, характеризуемую постоянной времени от секунд до нескольких минут, что ограничивает возможность их применения для измерения быстроменяющихся температур.
Кроме включения измерительного прибора в спай термопары возможно включение прибора в «электрод», т.е. в разрыв одного из термоэлектродов (рис. 15.1, в). Такое включение, в соответствии с (15.1), позволяет измерять разность температур t 1 – t 2 . Например, может быть измерен перегрев обмоток трансформатора над температурой окружающей среды при его испытаниях. Для этого рабочий спай термопары заделывают в обмотку, а свободный спай оставляют при температуре окружающей среды.
Т а б л и ц а 15.1. Характеристики термопар
Обозначение
Диапазон применения, о С
Медь – копель
Хромель – копель
Хромель – алюмель
Платинородий (10% Rh ) – платина
Платинородий (30% Rh ) – платинородий (6% Rh )
Вольфрамрений (5% Re ) – вольфрамрений (20% Re )
Требование постоянства температуры свободных концов термопары вынуждает по возможности удалять их от места измерения. Для этой цели применяют так называемые удлиняющие или компенсационные провода КП, подключаемые к свободным концам термопары с соблюдением полярности (рис. 15.1,г). Компенсационные провода составляются из разнородных проводников, которые в интервале возможных колебаний температуры свободных концов развивают в паре между собой такую же ТЭДС, как и термопара. Поэтому, если места подключения компенсационных проводов находятся при температуре t 2 , а температура в месте подключения термопары к прибору t 0 , то ТЭДС термопары будет соответствовать ее градуировке при температуре свободных концов t 0 .
Максимальная развиваемая стандартными термопарами ТЭДС составляет от единиц до десятков милливольт.
Для измерения ТЭДС могут применяться магнитоэлектрические, электронные (аналоговые и цифровые) милливольтметры и потенциометры постоянного тока. При использовании милливольтметров магнитоэлектрической системы следует иметь в виду, что измеряемое милливольтметром напряжение на его зажимах
где I – ток в цепи термопары, а R V – сопротивление милливольтметра.
Так как источником тока в цепи является термопара, то
I = E / (R V + R ВН ),
где R ВН – сопротивление участка цепи внешнего по отношению к милливольтметру (т.е. электродов термопары и компенсационных проводов). Поэтому измеряемое милливольтметром напряжение будет равно
U = E / (1+ R ВН / R V ).
Таким образом, показания милливольтметра тем больше отличаются от ТЭДС термопары, чем больше отношение R BH / R V . Для уменьшения погрешности от влияния внешнего сопротивления милливольтметры, предназначенные для работы с термопарами (так называемые пирометрические милливольтметры) градуируются для конкретного типа термопар и при определенном номинальном значении R BH , указываемом на шкале прибора. Пирометрические милливольтметры серийно выпускаются классов точности от 0.5 до 2.0.
Входное сопротивление электронных милливольтметров очень велико, и влияние сопротивления R BH на показания пренебрежимо мало.
Пьезоэлектрические преобразователи .
Такие преобразователи основаны на использовании прямого пьезоэлектрического эффекта, заключающегося в появлении электрических зарядов на поверхности некоторых кристаллов (кварца, турмалина, сегнетовой соли и др.) под влиянием механических напряжений. Пьезоэлектрическим эффектом обладают также некоторые поляризованные керамические материалы (титанат бария, цирконат-титанат свинца).
Если из кристалла кварца вырезать пластинку в форме параллелепипеда с гранями, расположенными перпендикулярно оптической 0 z , механической 0 y и электрической 0 х осям кристалла (рис. 15.2), то при воздействии на пластинку усилия F х , направленного вдоль электрической оси, на гранях х появляются заряды
Q x = K п F x , (15.2)
где К п – пьезоэлектрический коэффициент (модуль).
При воздействии на пластину усилия F у вдоль механической оси, на тех же гранях х возникают заряды
Q y = K п F y a / b ,
где а и b – размеры граней пластины. Механическое воздействие на пластину вдоль оптической оси появления зарядов не вызывает.

Пьезоэлектрический эффект является знакопеременным; при изменении направления прилагаемого усилия знаки зарядов на поверхности граней меняются на противоположные. Материалы сохраняют свои пьезоэлектрические свойства только при температурах ниже точки Кюри.

Величина пьезоэлектрического коэффициента (модуля) К п и температура точки Кюри для кварца и распространенных керамических пьезоэлектриков приведены в табл. 15.2.
Изотовление преобразователей из пьезокерамики значительно проще, чем из монокристаллов. Керамические датчики производят по технологии, обычной для радиокерамических изделий – путем прессования или литья под давлением; на керамику наносятся электроды, к электродам привариваются выводы. Для поляризации керамические изделия помещают в сильное электрическое поле, после чего они приобретают свойства пьезоэлектриков.
Электродвижущая сила, возникающая на электродах пьезоэлектрического преобразователя, довольно значительна – единицы вольт. Однако, если сила, приложенная к преобразователю, постоянна, то измерить ЭДС трудно, поскольку заряд мал и быстро стекает через входное сопротивление вольтметра. Если же сила переменна и при этом период изменения силы много меньше постоянной времени разряда, определяемой емкостью преобразователя и сопротивлением утечки, то процесс утечки почти не влияет на выходное напряжение преобразователя. При изменении силы F по закону F = F m sin  t ЭДС также изменяется синусоидально.
Таким образом, измерение неэлектрических величин, которые могут быть преобразованы в переменную силу, действующую на пьезоэлектрический преобразователь, сводится к измерению переменного напряжения или ЭДС.
Т а б л и ц а 15.2. Параметры кварца и керамических пьезоэлектриков
Материал (марка)
Точка Кюри, о С
Титанат бария (ТБ-1)
Цирконат-титанат свинца (ЦТС-19)
70.0х10 -12
119.0х10 -12
Пьезоэлектрические измерительные преобразователи находят широкое применение для измерения параметров движения: линейного и вибрационного ускорения, удара, акустических сигналов.
Эквивалентная схема пьезоэлектрического преобразователя представлена на рис. 15.3,а) в виде генератора с внутренней емкостью С . Поскольку мощность такого пьезоэлемента чрезвычайно мала, то для измерения выходного напряжения необходимо применять приборы с большим входным сопротивлением (10 11 …10 15 Ом).

Для увеличения полезного сигнала пьезодатчики выполняются из нескольких, последовательно соединенных элементов.

Устройство пьезоэлектрического датчика для измерения вибрационного ускорения показано на рис. 15.3,б). Пьезоэлемент (обычно из пьезокерамики), нагруженный известной массой m , помещен в корпус 1 и через выводы 2 включен в цепь электронного милливольтметра V . Подставив в формулу для возникающего на гранях заряда выражение F = ma , где а – ускорение, и учтя (15.2), получим
U = K u a ,
где K u – коэффициент преобразования датчика по напряжению.

PAGE 6


EMBED Visio.Drawing.6

В параметрических преобразователях выходной величиной является параметр электрической цепи (R, L, М, С). При использовании параметрических преобразователей необходим дополнительный источник питания, энергия которого используется для образования выходного сигнала преобразователя.

Реостатные преобразователи . Реостатные преобразователи основаны на изменении электрического сопротивления проводника под влиянием входной величины - перемещения. Реостатный преобразователь представляет собой реостат, щетка (подвижный контакт) которого перемещается под воздействием измеряемой неэлектрической величины.

К достоинствам преобразователей относится возможность получения высокой точности преобразования, значительных по уровню выходных сигналов и относительная простота конструкции. Недостатки - наличие скользящего контакта, необходимость относительно больших его перемещений, а иногда и значительного усилия для перемещения.

Применяют реостатные преобразователи для преобразования сравнительно больших перемещений и других неэлектрических величин (усилия, давления и т. п.), которые могут быть преобразованы в перемещение.

Тензочувствительные преобразователи (тензорезисторы). В основу работы преобразователей положен тензоэффект, заключающийся в изменении активного сопротивления проводника (полупроводника) под действием вызываемого в нем механического напряжения и деформации.

Рис. 11-6. Тензочувствительный проволочный преобразователь

Если проволоку подвергнуть механическому воздействию, например растяжению, то сопротивление ее изменится. Относительное изменение сопротивления проволоки, где S - коэффициент тензочувствительности;- относительная деформация проволоки.

Изменение сопротивления проволоки при механическом воздействии на нее объясняется изменением геометрических размеров (длины, диаметра) и удельного сопротивления материала.

В тех случаях когда требуется высокая чувствительность, находят применение тензочувствительные преобразователи, выполненные в виде полосок из полупроводникового материала. Коэффициент S у таких преобразователей достигает нескольких сотен. Однако воспроизводимость характеристик полупроводниковых преобразователей плохая. В настоящее время серийно выпускают интегральные полупроводниковые тензорезисторы, образующие мост или полумост с элементами термокомпенсации.

В качестве измерительных цепей для тензорезисторов используют равновесные и неравновесные мосты. Тензорезисторы применяют для измерения деформаций и других неэлектрических величин: усилий, давлений, моментов.

Термочувствительные преобразователи (терморезисторы). Принцип действия преобразователей основан на зависимости электрического сопротивления проводников или пoлупроводников от температуры.



Для измерения температуры наиболее распространены терморезисторы, выполненные из платиновой или медной проволоки. Стандартные платиновые терморезисторы применяют для измерения температуры в диапазоне от -260 до +1100°С, медные - в диапазоне от -200 до +200 "С.

Для измерения температуры применяют также полупроводниковые терморезисторы (термисторы) различных типов, которые характеризуются большей чувствительностью (ТКС термисторов отрицательный и при 20 "С в 10-15 раз превышает ТКС меди и платины) и имеют более высокие сопротивления (до 1 МОм) при весьма малых размерах. Недостаток термисторов - плохая воспроизводимость и нелинейность характеристики преобразования:

где R T и Ro- сопротивления термистора при температурах Т и То, То- начальная температура рабочего диапазона; В - коэффициент.

Термисторы используют в диапазоне температур от -60 до +120°С.

Для измерения температуры от -80 до +150 °С применяют термодиоды и термотранзисторы, у которых под действием температуры изменяется сопротивление р-n перехода и падение напряжения на этом переходе. Эти преобразователи обычно включают в мостовые цепи и цепи в виде делителей напряжения.

Достоинствами термодиодов и термотранзисторов являются высокая чувствительность, малые размеры и малая инерционность, высокая надежность и дешевизна; недостатками - узкий температурный диапазон и плохая воспроизводимость статической характеристики преобразования.

Электролитические преобразователи . Электролитические преобразователи основаны на зависимости электрического сопротивления раствора электролита от его концентрации. В основном их применяют для измерения концентраций растворов.

Индуктивные преобразователи . Принцип действия преобразователей основан на зависимости индуктивности или взаимной индуктивности обмоток на магнитопроводе от положения, геометрических размеров и магнитного состояния элементов их магнитной цепи.

рис 11-12 Магнитопровод с зазорами и двумя обмотками

Индуктивность обмотки, расположенной на магнитопроводе, где Zm - магнитное сопротивление магнитопровода;- число витков обмотки.

Взаимная индуктивность двух обмоток, расположенных на том же магнитопроводе, , где и - число витков первой и второй обмоток. Магнитное сопротивление определяется выражением

где - активная составляющая магнитного сопротивления (рассеиванием магнитного потока пренебрегаем); - соответственно длина, площадь поперечного сечения и относительная магнитная проницаемость i-го участка магнитопровода; mо - магнитная постоянная; d - длина воздушного зазора; s - площадь поперечного сечения воздушного участка магнитопровода,- реактивная составляющая магнитного сопротивления; Р - потери мощности в магнитопроводе, обусловленные вихревыми токами и гистерезисом;w- угловая частота; Ф - магнитный поток в магнитопроводе.

Приведенные соотношения показывают, что индуктивность и взаимную индуктивность можно изменять, воздействуя на длину d, сечение воздушного участка магнитопровода s, на потери мощности в магнитопроводе и другими путями.

По сравнению с другими преобразователями перемещения индуктивные преобразователи отличаются значительными по мощности выходными сигналами, простотой и надежностью в работе.

Недостаток их - обратное воздействие преобразователя на исследуемый объект (воздействие электромагнита на якорь) и влияние инерции якоря на частотные характеристики прибора.

Емкостные преобразователи . Емкостные преобразователи основаны на зависимости электрической емкости конденсатора от размеров, взаимного расположения его обкладок и от диэлектрической проницаемости среды между ними.

Для двухобкладочного плоского конденсатора электрическая емкость , где - электрическая постоянная; - относительная диэлектрическая проницаемость среды между обкладками; s - активная площадь обкладок; d - расстояние между обкладками. Чувствительность преобразователя возрастает с уменьшением расстояния d. Такие преобразователи используют для измерения малых перемещений (менее 1 мм).

Малое рабочее перемещение пластин приводит к погрешности от изменения расстояния между пластинами при колебаниях температуры. Выбором размеров деталей преобразователя и материалов добиваются снижения этой погрешности.

Преобразователи применяют для измерения уровня жидкостей, влажности веществ, толщины изделий из диэлектриков.

Рис. 11-16. Схема ионизационного преобразователя

Ионизационные преобразователи . Преобразователи основаны на явлении ионизации газа или люминесценции некоторых веществ под действием ионизирующего излучения.

Если камеру, содержащую газ, подвергнуть облучению, например, b-лучами, то между электродами, включенными в электрическую цепь (рис. 11-16), потечет ток. Этот ток зависит от приложенного к электродам напряжения, от плотности и состава газовой среды, размера камеры и электродов, свойств и интенсивности ионизирующего излучения. Эти зависимости используют для измерения различных неэлектрических величин: плотности и состава газовой среды, геометрических размеров деталей.

В качестве ионизирующих агентов применяют a-, b- и g-лучи радиоактивных веществ, значительно реже - рентгеновские лучи и нейтронное излучение.

Основное достоинство приборов, использующих ионизирующие излучения, заключается в возможности бесконтактных из--мерений, что имеет большое значение, например, при измерениях в агрессивных или взрывоопасных средах, а также в средах, находящихся под большим давлением или имеющих высокую температуру. Основной недостаток этих приборов - необходи-мость применения биологической защиты при высокой активности источника излучения.

1. Каковы устройство, принцип работы и применение:

а) фотоэлектрических преобразователей;

Фотоэлектрическими называются такие преобразователи, у которых выходной сигнал изменяется в зависимости от светового потока, падающего на преобразователь. Фотоэлектрические преобразователи или, как мы будем их называть в дальнейшем, фотоэлементы делятся на три типа:

1)фотоэлементы с внешним фотоэффектом

Они представляют собой вакуумные или газонаполненные сферические стеклянные баллоны, на внутреннюю поверхность которых наносится слой фоточувствительного материала, образующий катод. Анод выполняется в виде кольца или сетки из никелевой проволоки. В затемненном состоянии через фотоэлемент проходит темновой ток, как следствие термоэлектронной эмиссии и утечки между электродами. При освещении фотокатод под влиянием фотонов света имитирует электроны. Если между анодом и катодом приложено напряжение, то эти электроны образуют электрический ток. При изменении освещенности фотоэлемента, включенного в электрическую цепь, изменяется соответственно фототок в этой цепи.

2)фотоэлементы с внутренним фотоэффектом

Они представляют собой однородную полупроводниковую пластину с контактами, например из селенида кадмия, которая под действием светового потока изменяет свое сопротивление. Внутренний фотоэффект заключается в появлении свободных электронов, выбитых квантами света из электронных орбит атомов, остающихся свободными внутри вещества. Появление свободных электронов в материале, например в полупроводнике, эквивалентно уменьшению электрического сопротивления. Фоторезисторы имеют высокую чувствительность и линейную вольт-амперную характеристику (ВАХ), т.е. их сопротивление не зависит от приложенного напряжения.

3)фотогальванические преобразователи.

Данные преобразователи представляют собой активные светочувствительные полупроводники, создающие при поглощении света вследствие фотоэффектов в запорном слое свободные электроны и ЭДС.

Фотодиод (ФД) может работать в двух режимах - фотодиодном и генераторном (вентильном). Фототранзистор - полупроводниковый приемник лучистой энергии с двумя и большим числом р - «-переходов, в которых совмещен фотодиод и усилитель фототока.

Фототранзисторы, как и фотодиоды, применяются для преобразования световых сигналов в электрические

б) емкостных преобразователей;

Емкостный преобразователь представляет собой конденсатор,емкость которого изменяется под действием измеряемой неэлек­трической величины. В качестве емкостного преобразователя широко используют плос­кий конденсатор, емкость которого можно выразить формулой C =e0eS/5, где е0- диэлектрическая постоянная воздуха (е0= 8,85 10"12Ф/м;е - относительная диэлектрическая проницаемость среды между обкладками конденсатора; S-площадь обкладки; 5-расстояние между обкладками)

Так как измеряемая неэлектрическая величина может быть функционально связана с любым из этих параметров, то устрой­ство емкостных преобразователей может быть самым различным в зависимости от области применения. Для измерения уровней жид­ких и сыпучих тел используют цилиндрические или плоские кон­денсаторы; для измерения малых перемещений, быстроизменяющихся сил и давлений - дифференциальные емкостные преоб­разователи с переменным зазором между обкладками. Рассмотрим принцип использования емкостных преобразователей для изме­рения различных неэлектрических величин.

в) тепловых преобразователей;

Тепловой преобразователь представляет собой проводник илиполупроводник с током, с большим температурным коэффици­ентом, находящийся в теплообмене с окружающей средой. Име­ется несколько путей теплообмена: конвекцией; теплопроводнос­тью среды; теплопроводностью самого проводника; излучением.

Интенсивность теплообмена проводника с окружающей сре­дой зависит от следующих факторов: скорости газовой или жид­кой среды; физических свойств среды (плотности, теплопровод­ности, вязкости); температуры среды; геометрических размеров проводника. Эту зависимость температуры проводника, а следова­тельно, и его сопротивления от перечисленных факторов можно

использовать для измерения различных неэлектрических величин,характеризующих газовую или жидкую среду: температуры, ско­рости, концентрации, плотности (вакуума).

г) ионизационных преобразователей;

Ионизационными преобразователями называют такие преобра­зователи, в которых измеряемая неэлектрическая величина функ­ционально связана с током электронной и ионной проводимости газовой среды. Поток электронов и ионов получается в ионизационных пре­образователях либо ионизацией газовой среды под воздействием того или иного ионизирующего агента, либо путем термоэлек­тронной эмиссии, либо путем бомбардировки молекул газовой среды электронами и т.д.

Обязательные элементы любого ионизационного преобразова­теля - источник и приемник излучений.

д) реостатных преобразователей;

Реостатный преобразователь представляет собой реостат, движок которого перемещается под действием измеряемой неэлектрической величины. На каркас из изоляционного ма­териала намотана с равномерным ша­гом проволока. Изоляция проволоки на верхней границе каркаса зачищает­ся, и по металлу скользит щетка. До­бавочная щетка скользит по токосъемному кольцу. Обе щетки изоли­рованы от приводного валика. Реостатные преобразователи вы­полняются как с проводом, намотан­ным на каркас, так и реохордного типа. В качестве материала провода применяют нихром, манганин, константан и др. В ответственных случаях, когда требования к износоустойчивости контактных поверхностей очень вели­ки или когда контактные давления очень малы, применяют сплавы платины с иридием, палладием и т.д. Провод реостата должен быть покрыт либо эмалью, либо слоем оксидов для изоляции соседних витков друг от друга. Движ­ки бывают из двух-трех проволочек (платина с иридием) с кон­тактным давлением 0,003...0,005 Н или пластинчатые (серебро, фосфористая бронза) с усилием 0,05...0,1 Н. Контактная поверх­ность намотанного провода полируется; ширина контактной по­верхности равна двум-трем диаметрам провода. Каркас реостат­ного преобразователя выполняется из текстолита, пластмассы или из алюминия, покрытого изоляционным лаком, или оксидной пленкой. Формы каркасов разнообразные. Реактивное сопротив­ление реостатных преобразователей очень мало и им обычно можно пренебречь на частотах звукового диапазона.

Реостатные преобразователи могут быть использованы для измерения виброускорений и виброперемещений с ограниченным частотным диапазоном.

е) тензорезисторных преобразователей;

Тензорезисторный преобразователь (тензорезистор) представляет собой проводник, изменяющий свое сопротивление при деформации растяжения или сжатия. Длина проводника / и площадь поперечного сечения S изменяются при его деформациях. Эти деформации кристаллической решетки приводят к изменению удельного сопротивления проводника р и, следовательно, к изменению полного сопротивления

Применение: для измерения деформаций и механических на­пряжений, а также других статических и динамических механи­ческих величин, которые пропорциональны деформации вспомогательного упругого элемента (пружины), например пути, ус­корения, силы, изгибающего или вращающего момента, дав­ления газа или жидкости и т.д. По этим измеряемым величинам можно определить производные величины, например массу (вес), степень заполнения резервуаров и т.д. Проволочные тензорезисторы на бумажной основе, а так­же фольговые и пленочные применяют для измерения относительных деформаций от 0,005... 0,02 до 1,5...2 %. Свободные проволочные тензорезисторы могут быть использованы для измерения деформаций до 6... 10 %. Тензорези­сторы практически безынерционны и применяются в диапазоне частот 0... 100 кГц.

ж) индуктивных преобразователей;

Индуктивные измерительные преобразователи предназначены для преобразования положения (перемещения) в электрический сигнал. Они являются наиболее компактными, помехоустойчивыми, надежными и экономичными измерительными преобразователями при решении задач автоматизации измерения линейных размеров в машино- и приборостроении.

Индуктивный преобразователь состоит из корпуса, в котором на направляющих качения размещен шпиндель, на переднем конце которого расположен измерительный наконечник, а на заднем – якорь. Направляющая защищена от внешних воздействий резиновым манжетом. Связанный со шпинделем якорь находится внутри закрепленной в корпусе катушки. В свою очередь обмотки катушки электрически связаны с кабелем, закрепленным в корпусе и защищенным от перегибов конической пружиной. На свободном конце кабеля имеется разъем, служащий для подключения преобразователя к вторичному прибору. Корпус и шпиндель выполнены из закаленной нержавеющей стали. Переходник, соединяющий якорь со шпинделем состоит из титанового сплава. Пружина, создающая измерительное усилие, отцентрирована, что исключает трение при движении шпинделя. Такая конструкция преобразователя обеспечивает снижение случайной погрешности и вариации показаний до уровня менее 0,1 мкм.

Индуктивные преобразователи широко применяют в основном для измерения линейных и угловых перемещений.

з) магнитоупругих преобразователей;

Магнитоупругие преобразователи являются разновидностью электромагнитных преобразователей. Они основаны на явлении изменения магнитной проницаемости μ ферромагнитных тел в зависимости от возникающих в них механических напряжений σ, связанных с воздействием на ферромагнитные тела механичес­ких сил Р (растягивающих, сжимающих, изгибающих, скручи­вающих). Изменение магнитной проницаемости ферромагнитного сердечника вызывает изменение магнитного сопротивления сер­дечника RM. Изменение же RM ведет к изменению индуктивности катушки L , находящейся на сердечнике. Таким образом, в магнитоупругом преобразователе имеем следующую цепь преобра­зований:

Р -> σ -> μ -> Rм -> L .

Магнитоупругие преобразователи могут иметь две обмотки (трансформаторного типа). Под действием силы вследствие изме­нения магнитной проницаемости изменяется взаимная индуктивность М между обмотками и наводимая ЭДС вторичной обмотки Е. Цепь преобразования в этом случае имеет вид

Р -> σ -> μ -> Rм -> М -> Е.

Эффект изменения магнитных свойств ферромагнитных мате­риалов под влиянием механических деформаций называют магнитоупругим эффектом.

Магнитоупругие преобразователи применяют:

Для измерения больших давлений (больше 10 Н/мм2 , или 100 кГ/см2), так как они непосредственно воспринимают давление и не нуждаются в дополнительных преобразователях;

Для измерения силы. В этом случае предел измерения прибора определяется площадью магнитоупругого преобразователя. Дан­ные преобразователи деформируются под действием силы очень незначительно. Так, при l = 50 мм, △l < 10 мкм они имеют высо­кую жесткость и собственную частоту до 20... 50 кГц. Допустимые напряжения в материале магнитоупругого преобразователя не дол­жны превышать 40 Н/мм2 .

и) электролитических преобразователей сопротивления;

Электролитические преобразователи относятся к типу электрохимических преобразователей. В общем случае электрохимический преобразователь представляет собой электролитическую ячей­ку, заполненную раствором с помещенными в нее электродами, служащими для включения преобразователя в измерительную цепь. Как элемент электрической цепи электролитическая ячейка мо­жет характеризоваться развиваемой ею ЭДС, падением напряжения от проходящего тока, сопротивлением, емкостью и индук­тивностью. Выделяя зависимость между этими электрическими параметрами и измеряемой неэлектрической величиной, а также подавляя действие других факторов, можно создать преобразователи для измерения состава и концентрации жидких и газообразных сред, давлений, перемещений, скорости, ускорения и других величин. Электрические параметры ячейки зависят от состава ра­створа и электродов, химических превращений в ячейке, темпе­ратуры, скорости перемещения раствора и др. Связи между электрическими параметрами электрохимических преобразователей и неэлектрическими величинами определяются законами электро­химии.

Принцип действия электролитических пре­образователей основан на зависимости сопротивления электро­литической ячейки от состава и концентрации электролита, а также от геометрических размеров ячейки. Сопротивление столба жид­кости электролитического преобразователя:

R = ρh/S = k/૪

где ૪= 1/ρ - удельная проводимость электролита; k - постоянная преобразователя, зависящая от соотношения его геометрических размеров, определяемая обычно экспериментально.

IV. Классификация преобразователей.

(вернуться к оглавлению)

Измерительная информация, получаемая от контролируемого объекта, передается в измерительную систему в виде сигналов какого-либо вида энергии и преобразуется из одного вида энергии в другой. Необходимость такого преобразования вызвана тем, что первичные сигналы не всегда удобны для передачи, переработке, дальнейшего преобразования и воспроизведения. Поэтому при измерении неэлектрических величин воспринимаемые чувствительным элементом сигналы преобразуются в электрические сигналы, являющиеся универсальными.

Та часть прибора, в которой неэлектрический измеряемый сигнал преобразуется в электрический, называется преобразователем.

Известно много электрических методов измерения неэлектрических величин. Для удобства изучения введем классификацию этих методов по виду связи между электрическими и неэлектрическими величинами:

Параметрические преобразователи , в которых измеряемая неэлектрическая величина преобразуется в соответствующее изменение параметров электрической цепи, питаемых внешними источниками ЭДС. При этом сигналы, получаемые от измеряемого объекта, служат только для управления энергией постороннего источника, включенного в цепь.

Генераторные преобразователи , в которых сигналы, получаемые от измеряемого объекта, непосредственно преобразуются в электрические сигналы. При этом желательный эффект преобразования может быть получен без использования посторонних источников ЭДС.

К параметрическим относят методы, основанные на изменении сопротивления, емкости и индуктивности электрических цепей.

К генераторным относятся электромагнитный, термоэлектрический, пьезоэлектрический и другие методы.

Входом является некая величена X, а на выходе электрический сигнал(Y).

(*)

x => ΔF => Δх => ΔR

Преобразование физической величины х в электрический сигнал. Для визуализации параметров R, L, C, M к ним надо подвести генератор электрической мощности

(*) К таким цепям применимы законы расчета электроцепей.

1.1 Метод сопротивления .

В этом методе используется зависимость электрического сопротивления резисторов от различных неэлектрических величин.

Например, изменение омического сопротивления проволочного реостата при перемещении скользящего контакта под действием механических сил.

Общие замечания. Параметрические преобразователи, как отмечено в разделе 1, управляют параметрами потока энергии, поступающего от внешнего источника, и могут работать в одном из двух режимов. В первом из них преобразователь является регулятором постоянного тока или напряжения.

Измерительную информацию несет закон изменения уровня электрической величины. Хотя такой преобразователь принципиально должен быть нелинейной системой, в определенных условиях его выходной сигнал может считаться линейно связанным со входным и даже прослеживается аналогия с генераторными МЭП. Например, в простейшем случае преобразователь, имеющий электрический импеданс включен последовательно с нагрузкой и питается от источника с и внутренним сопротивлением Внешнее воздействие изменяет импеданс преобразователя на вследствие чего ток в цепи изменяется на величину Отсюда имеем

Нелинейность преобразования вносит произведение Но при

Если импеданс линейно связан с входной величиной МЭП (обычно это перемещение т. е. то можно записать

Если в преобразователе действует электрическая сила причем где не зависят от то уравнение баланса сил принимает вид

Последние два уравнения подобны системе уравнений (1) и (2), причем Если то такой преобразователь эквивалентен генераторному МЭП, и его можно назвать квазиобрагимым. Для него сохраняют силу общие замечания раздела 2. Преобразователь, питаемый постоянным током, может быть квазиобратимым только при условии, что энергия источника питания затрачивается главным образом на создание электрического или магнитного поля в преобразователе. Если иоле мало, то отсутствуют и пондеромоторные снлы, Практически такой же результат получается при питании переменным током вследствие различия спектрального состава входной и выходной величин (преобразователь, являясь модулятором, осуществляет перенос спектра, см. гл. 10).

Выходным сигналом преобразователя может быть ток (при или напряжение на нагрузке (в обратном случае).

Кроме режима регулятора тока, параметрический МЭП может работать в режиме возбудителя, входя в состав частотно-задающей цепи генератора с самовозбуждением. Измеряемая величина модулирует частоту генерируемого напряжения. Изменение частоты может быть прямо использовано в качестве выходного сигнала либо преобразовано в другую форму (дискретную или аналоговую). В этом режиме преобразователь всегда необратим.

Рис. 10. Емкостный преобразователь: о - с переменным зазором (площадью); 6 - с переменной проницаемостью; в - дифференциальный

Выходной сигнал параметрического МЭП, питаемого переменным током, должен подвергаться детектированию (демодулированию), производимому обычно в усилительно-преобразующей аппаратуре. Так как этот сигнал действует на фоне другого, не несущего полезной информации, но более сильного вследствие того, что его выделение осуществляется дифференциальными или мостовыми схемами .

Емкостный преобразователь. Принцип действия этого преобразователя основан на зависимости емкости между проводниками от их взаиморасположения, размеров И свойств среды между ними. В простейшем случае плоского конденсатора его емкость

где площадь электродов; 6 - зазор между ними; эффективная (т. е. учитывающая неоднородность свойств) диэлектрическая проницаемость межэлектродного пространства. Возможные принципиальные схемы емкостного преобразователя представлены на рис. 10. Имеются два вида зависимостей емкости от перемещения х одного из электродов:

Первый из них соответствует изменению площади или эффективной проницаемости, второй - изменению зазора.

При для первого вида

а для второго

Таким образом, уравнение (30) может быть записано в следующем виде:

где или для видов 1 и 2 соответственно.

Выражение для существенно зависит от электрического режима преобразователя. Вследствие сложности анализа в общем виде ограничимся двумя крайними случаями при питании от источпика постоянього напряжения.

1 Изменения емкости происходят настолько медленно, что источник питания успевает практически без запаздывания заряжать емкость, поддерживая на ней одно и то же напряжение, равное если последовательно с преобразователем не включены другие емкости Тогда (32) принимает следующий вид:

С другой стороны, и так как равно или -

Так как заряд на емкости

где переменная часть заряда, то для вида 2 можно записать:

2. Изменения емкости происходят наоолько быстро, что заряд на ней не успевает существенно измениться и сохраняется равным начальному значению Следовательно, напряжение на емкости изменяется по закону Если заряд не изменяется, то ток, проходящий через емкость, равен нулю, а источник питания нужен по существу только для начального заряда емкости (при пренебрежении током утечки). Однако имеется малый ток через нагрузку поддерживаемый работой внешней силы Для зависимости первого вида емкости от перемещения (см. стр. 197)

т. е. кроме постоянной силы имеется дополнительная электрическая упругость. Для зависимости второго вида

Уравнение (32) записывается в следующем виде

второго члена объясняется тем, что вначале (при ) импеданс емкое? и а не нагрузки, определяет характер начального тока.

Уравнения преобразователя во всех режимах и их решениях сведены в табл. 2.

2. Уравнения емкостного преобразователя

(см. скан)

Из приведенных в табл. 2 выражений видно, что во всех случаях выходной ток прямо или косвенно зависит от При работе в режиме постоянного напряжения и при упругом характере преобразователь является дифференциатором. В режиме постоянного заряда выходной сигнал зависит от вида нагрузки, в частности, если нагрузка активная, то ток пропорционален силе. Однако в любом случае невозможно измерить постоянные силы или перемещения Из табл. 2 видно, что в одном из режимов преобразователь является квазиобратимым.

При питании преобразователя от источника переменного напряжения ток через него протекает, даже если емкость не изменяется, и, ток может служить мерой емкости при любом законе ее изменения. Для расчета следует использовать уравнение (32) с учетом того, что является функцией Например, при питании синусоидальным напряжением частоты формулам табл. 2 можно определить амплитуду выходного тока если вместо выражения, стоящего перед взять его модуль при Частоту называемую несущей, выбирают значительно больше наивысшей частоты в спектре В зависимости от соотношения преобразователь может работать в двух крайних режимах короткого замыкания и холостого хода В первом из них имеет место уравнение

а во втором

Выражения для разбиваются на две части, причем первая не зависит от времени, а вторая пульсирует с частотой почти всегда ими можно пренебречь (см. ниже), преобразователь считать необратимым

Расчет показывает, что при правильном выборе в любом режиме амплитуда выходного гока преобразователя может быть пропорциональна действующей силе. Например, для режима холостого хода и переменного зазора

Следовательно, надо выбирать так, чтобы знаменатель был постоянным. При упругом характере импеданса это соответствует активной нагрузке: Для измерения обычно используют мостовые схемы .

Наибольшая удельная сила притяжения электродов преобразователя определяется пробойной напряженностью поля и для воздуха составляет . Если действующая сила во всех режимах в значительной степени больше силы электрического взаимодействия, то использование преобразователя только при сужает возможный диапазон изменения входной величины. Увеличение же ведет к быстрому росту нелинейности преобразования, которую можно уменьшить применением различных методов линеаризации. Одним из них является использование дифференциальных преобразователей (рис. 10, в), в которых емкости изменяются одновременно в разные стороны. В этом случае наряду с линеаризацией и увеличением чувствительности достигается хорошая компенсация влияния внешних условий. Линейность значительно увеличивается, если выходным является параметр, обратный А С, например изменение емкостного сопротивления. Линейная связь его с х соблюдается вплоть до смыкания электродов преобразователя. Прямую линеаризацию можно произвести путем преобразования выходного сигнала в дополнительном блоке на основе микропроцессора, что теперь вполне возможно даже в устройствах с автономным питанием.

Если емкость включена в задающую цепь генератора переменного напряжения, то можно измерять не токи или напряжения, а временные параметры - частоту или длительность. В классическом генераторе с индуктивностью период колебаний пропорционален а в резистивно-емкостном генераторе он линейно зависит от С. Этот метод обладает большой гибкостью, так как всегда можно выбрать оптимальный вид выходного сигнала. Например, при включении преобразователя переменным зазором в цепь резистивно-емкостного генератора частота колебаний

Изменение частоты пропорционально х и его целесообразно использовать в качестве выходного сигнала. Если преобразователь имеет переменную площадь, то линейно связанным с перемещением оказывается период колебаний

Следовательно, в обоих случаях возможна работа без вышеприведенного ограничения с большой устойчивостью к перегрузке. При включении преобразователя в колебательный контур эти свойства в значительной степени теряются, но достигается гораздо большая стабильность параметров генератора. Поэтому последний способ широко применяют в высокочувствительных и стабильных измерительных системах. Преобразователь с частотным выходом необратим во всех случаях.

Чувствительность емкостного преобразователя определяется его геометрическими соотношениями, питающим напряжением и стабильностью конструктивных елементов. Наиболее высокая чувствительность достигается при переменном зазоре, однако одновременно уменьшается верхний предел измерения. Поэтому области применения преобразователей с переменной площадью и переменным зазором различны. Преобразователи с переменной проницаемостью в технике механических измерений используют редко» хотя существуют кристаллические вещества с большой зависимостью проницаемости от механического напряжения. Такие диэлектрики могут быть эффективны в преобразователях силы и давления.

Емкостные преобразователи используют при измерении сил и сводимых к ним величин, а также перемещений, особенно малых и сверхмалых.

Индуктивный преобразователь. Действие индуктивных МЭП основано на использовании зависимости индуктивности контура с током или взаимоиндуктивности двух связанных контуров от их размеров, формы, взаиморасположения и магнитной проницаемости среды, в которой находятся. В частности, индуктивность катушки с магнитным сердечником, имеющим зазор, зависит от длины последнего (рис. И).

Примем, что кольцевой зазор, через который замыкаются силовые линии, идущие вне катушки, настолько мал, что им можно пренебречь. Если обозначить через абсолютную магнитную проницаемость сердечника; I - среднюю длину силовой линии в сердечнике; индуктивность катушти без сердечника, то индуктивность изображенной на рис. 11 катушки где эффективная магнитная проницаемость с учетом зазора;

Эта формула верна при Если в дополнение к этому то

Таким образом,

где индуктивность при

Рис. 11. Индуктивный преобразователь: 1 - неподвижный сердечник; 2 - катушка; 3 - подвижный сердечник

Энергия магнитного поля в катушке

где ток при Если ограничиться членами 2-го порядка малости и учесть, что то

Подставляя эти величины в (30), (31) и учитывая, что получаем уравнения преобразователя

Из этих уравнений видно, что преобразователь является квазиобратимым с коэффициентом (но не ), равным

Выходной ток

Как обычно, в дорезонансной области преобразователь дифференцирующий, а за резонансом - масштабный. Питание индуктивного преобразователя постоянным напряжением не практикуется, поскольку в отличие от емкостного, он потребляет энергию, бесполезно расходуемую на его активном сопротивлении. При питании переменным напряжением уменьшается расход энергии и становится

возможным измерение постоянных величин. Выходные параметры рассчитывают так же, как и для емкостного преобразователя. Сохраняют силу выводы о возможности применения временных или частотных методов измерения и линеаризации.

Преобразователи имеют много конструктивных разновидностей . Кроме преобразователей с переменной длиной зазора, характеризующихся наибольшей чувствительностью к перемещению сердечника, известны преобразователи с переменной площадью зазора; с разомкнутой магнитной цепью (без неподвижного сердечника); с переменной взаимоиндуктивностью и др. Чувствительность их достаточна для измерения перемещений до

Индуктивные преобразователи применяют для измерения перемещений и преобразовываемых в них сил и давлений.

Магнитоупругий преобразователь отличается от индуктивного механизмом изменения индуктивности. Оно осуществляется прямым воздействием силы на ферромагнитный сердечник (рис. 12). Известно, что проницаемость ферромагнетика зависит от механических напряжений в материале . Если при отсутствии напряжения проницаемость равна то создание напряжения а изменяет ее на Чувствительность ферромагнетика к напряжениям характеризуют коэффициентом который зависит от а и поля в ферромагнетике В некоторой области изменения можно принять Тогда индуктивность катушки где Так как для изображенного преобразователя где модуль упругости материала сердечника, перемещение его верхнего торца, высота, то

Рис. 12. Магнитоупругий преобразователь: 1 - сердечник; 2 - катушка

Подставляя это значение в (30), получаем уравнение для выходного тока преобразователя. Магнитоупругий преобразователь всегда питают переменным напряжением, ввиду чего он практически необратим. Выходной сигнал находят по формуле, аналогичной (35). Так как значения коэффициента Могут достигать нескольких сотен, преобразователь чувствителен к малым напряжениям. Однако шумы в ферромагнетике и гистерезнсные явления ограничивают Минимальные измеряемые напряжения значением порядка

Естественной областью применения магнитоупругого преобразователя является измерение сил и давлений. Однако он используется реже, чем индуктивный, в основном для измерения медленно изменяющихся величин одного знака.

Резистивные преобразователи. Действие резистивных МЭП основано на использовании зависимости входящих в формулу для электрического сопротивления величин - длины проводника его сечения и удельной электропроводности материала у - от механических воздействий. В простейшем случае резистивный МЭП представляет собой прямой или намотанный спиралью провод с переменной активной длиной, определяемой положением скользящего контакта (рис. 13). Такой преобразователь называют реостатным. Изображенный преобразователь со спиральной намоткой не аналоговый, а дискретный с шагом, равным межвитковому расстоянию При перемещении контакта на х относительное изменение сопротивления равно где I - длина намотки. Таким образом, может изменяться от до единицы, однако обычно начальное положение контакта выбирают в середине намотки. Другим примером является тензорезистор - проводящий ток элемент, подвергающийся деформации, чаще одноосной (рис. 14). При этом изменяются все величины, от которых зависит сопротивление.

Для оценки свойств материала тензорезистора вводят коэффициент тензочувствительности , равный Расчет изменения размеров провода при деформации

дает для значение где коэффициент Пуассона, равный Но так как в дополнение к этому изменяется плотность материала, а следовательно, и концентрация носителей заряда, и деформируется кристаллическая решетка, оказывается значительно большим для металлов). В полупроводниках, где имеются носители зарядов двух типов и механические напряжения изменяют структуру энергетических зон и подвижность носителей, коэффициент тензочувствитель-ности на порядок выше, но зависит от типа проводимости, ее значения и ориентации оси резистора относительно кристаллографических осей материала .

Рис. 13. Реостатный преобразователь

Рис. 14. Тензорезистивиый преобразователь

В резистивных преобразователях можно полностью пренебречь воздействием электрической стороны на механическую и рассматривать обе как независимые. Механический импеданс тензорезистора относительно невелик и носит упругий характер; в реостатном преобразователе скользящий контакт является нелинейным элементом (типа трения без смазки). Чувствительность резистивных преобразователей обоих типов, например по току, определяется формулами

где коэффициент преобразования деформации объекта в деформацию тензорезистора Передача деформации осуществляется либо по всей длине тензорезистора, либо в отдельных точках. Конструкции тензорезисторных МЭП разнообразные. Их изготовляют различной формы из проволоки, фольги, напыленной пленки или куска монокристалла.

Чувствительность тензорезисторных МЭП позволяет измерять динамические деформации до

Реостатные преобразователи применяют для измерения относительно больших относительных перемещений, а тензорезистивиые - для измерения деформаций и преобразуемых в них величин: сил, давлений, моментов.

Преобразователи с переменной характеристикой. Особую разновидность параметрических МЭП представляют преобразователи с нелинейной вольтамперной характеристикой изменяющейся при механическом воздействии на преобразователь. Типичным примером является механотронный преобразователь - электровакуумный прибор с подвижным электродом . На рис. 15 показан схематически диодный механотрон с подвижным анодом. При перемещении анода относительно катода, происходящем под воздействием силы на упругую мембрану, диода - зависимость анодного тока от напряжения между электродами - изменяется. Это видно из формулы для анодного тока

где В - коэффициент, зависящий от материала и температуры катода и площади электродов; анодное напряжение. Изменение показано на рис. 16, в правом квадранте которого изображено семейство характеристик при разных межэлектродных расстояниях Изображение зависимостей в виде графиков часто является единственно возможным, если отсутствуют аналитические выражения, имеющие достаточную точность. Так как в цепь диода включен нагрузочный резистор выполняется равенство в результате чего ток изменяется соответствии с динамической характеристикой построение которой показано в левом квадранте рис. 16. Несмотря на резко выраженную нелинейность исходных ВАХ, динамическая характеристика близка к прямой.

Рис. 15. Диодный механотронный преобразователь: 1 - мембрана, 2 - подвижный аиод

Рис. 16. Схема построения динамической характеристики преобразователя

Отсчитывая перемещение анода х от начального расстояния 60 и обозначив можно записать следовательно, уравнения преобразователя:

Таким образом, оба уравнения независимы. Выходной ток преобразователя

Механический импеданс механотрона значителен. В дорезонансной области, которая для этого типа МЭП обычно является рабочей, преобразователь будет масштабным.

Диодный механотрон является простейшим в ряду преобразователей с подвижными электродами. Разработаны конструкции с двумя анодами и дифференциальной схемой включения, выполненные как по диодной, так и по триодной схемам, с чувствительностью до нескольких сот микроампер на микрометр. Вследствие большой жесткости механотроны более пригодны для измерения сил и давлений.

Наряду с вакуумными известны преобразователи твердотельного типа - полупроводниковые диоды и триоды (транзисторы), в которых является функцией механического напряжения, приложенного к активной области кристалла: -переходу, каналу . Практически все известные типы полупроводниковых приборов могут использоваться в этих целях. Эффект здесь достигается за счет того, Что при изменении размеров активной области изменяются концентрация и подвижность носителей заряда, а в полевом транзисторе с изолированным затвором возникает еще и пьезоэлектрическая поляризация в изолирующем слое. Полупроводниковые МЭП этого типа имеют значительно меньший механический импеданс, чем механотрон, и могут измерять малые силы, поскольку их чувствительность высока; однако

стабильность недостаточно хороша. Пока они не получили широкого распространения.

Резонаторные преобразователи. Преобразователи этого типа представляют собой генераторы с электромеханической обратной связью через частотно-избирательный элемент, параметры которого зависят от производимого на него воздействия (рис. 17). Генератор с пьезоэлектрическим резонатором в цепи обратной связи возбуждается на частоте равной где скорость распространения используемых звуковых волн; целое число; I - длина пути волн в резонаторе. Если на резонатор действует сила, его размеры и механические свойства, а с ними и частота генерации, изменяются в первом приближении пропорционально силе. Таким образом, преобразователь является управляемым силой генератором с частотной модуляцией и близок к емкостным или индуктивным МЭП с частотным выходом, однако в последних используется не механический, а электрический резонанс. Но

где масса резонатора; толщина; модуль сдвига в направлении

Стабильность определяется стабильностью комбинации геометрических и упругих параметров, стоящей в скобках. Важное значение при этом имеет ликвидация утечек энергии, генерируемой в резонаторе, что достигается рациональным выбором типа возбуждаемых волн, конструкции резонатора и присоединительных элементов.

Резонаторные МЭП нецелесообразно описывать системой уравнений (1) и (2), так как они имеют частотный выход, а обратное влияние электрической стороны на механическую определяется слабыми эффектами второго порядка малости, и им можно пренебречь.

Наиболее распространены резонаторные МЭП другого вида - так называемые вибрационно-частотные (струнные) . Их действие основано на использовании того факта, что собственная частота струны, натянутой с усилием пропорциональна Следовательно, если то отклонение частоты от

начального значения пропорционально Однако резонаторы на твердом теле имеют хорошую перспективу, так как обладают рядом преимуществ, в частности по быстродействию. Их чувствительность позволяет измерять силы, вызывающие напряжения порядка Известны также преобразователи с чисто электрическими резонаторами типа клистронных, которые однако не вышли за пределы лабораторных исследований вследствие значительных эксплуатационных неудобств. Резонаторные МЭП используют для измерения сил и величин, сводимых к ним.

Рис. 18. Вихретоковый преобразователь

Вихретоковый преобразователь. Действие вихретоковых (или токовихревых) преобразователей основано на использовании явления электромагнитной индукции. Если в магнитном поле тока находится проводящее тело, то при изменении поля в нем возбуждаются короткозамкнутые (вихревые) токи, отсасывающие энергию поля }

В продолжение темы:
Linux

Недавно TWITTER, как и Яндекс, сменил свой дизайн. Изменения коснулись внешнего вида, слегка изменилась функциональность. Из-за произошедших обновлений, многие пользователи...