Презентация на тему "измерительные приборы". Презентация на тему электроизмерительные приборы Современные измерительные приборы презентация

Описание презентации по отдельным слайдам:

1 слайд

Описание слайда:

2 слайд

Описание слайда:

Аналоговыми измерительными приборами называют приборы, показания которых являются непрерывной функцией изменений измеряемой величины.

3 слайд

Описание слайда:

Аналоговый электроизмерительный прибор - это, в первую очередь, показывающий прибор, т. е. прибор, допускающий отсчитывание показаний. Для этого у всех аналоговых электроизмерительных приборов, независимо от назначения и от разновидности применяемого в нем измерительного механизма любой прибор содержит общие для всех аналоговых приборов узлы и элементы: отсчетное устройство, состоящее из шкалы, расположенной на циферблате прибора, и указателя устройства по созданию противодействующего и успокаивающего моментов опорное устройство.

4 слайд

Описание слайда:

Измерительная цепь Измерительный механизм Отсчетное устройство Измерительная цепь является преобразователем из­меряемой величины х в некоторую промежуточную электрическую величину у (ток, напряжение), функционально связанную с измеряемой величиной х, т. е. y=f1(x). Электрическая величина у, которой является ток или напряжение, непосредственно воздействует на измерительный механизм (входная величина механизма). Измерительная цепь содержит в себе сопротивления, индуктивности, емкости и другие элементы. Измерительный механизм является преобразователем подведенной к нему электрической энергии в механическую энергию, необходимую для перемещения его подвижной части относительно неподвижной, т. е. α = f2(y). Входные величины создают механические силы, действующие на подвижную часть. Обычно в механизмах подвижная часть может только поворачиваться вокруг оси, поэтому механические силы, действующие на меха­низм, создают момент М. Этот момент называется вращающим моментом М=Wм /α., где Wм – энергия магнитного поля Отсчётное устройство - указатель (стрелка), перо, жёстко связанное с подвижной частью измерительного механизма и неподвижной шкалой (бумажным носителем, совмещающим функции шкалы и носителя регистрируемой информации). Подвижная часть преобразует угловое перемещение механизма в перемещение указателя, при этом величина α отсчитывается в единицах деления шкалы. X Y α

5 слайд

Описание слайда:

Общими элементами аналоговых электромеханических приборов являются: корпус (из металла или пластмассы), неподвижная и подвижная части (катушка, ферромагнитный магнитопровод или алюминиевый вращающийся диск), противодействующее устройство (спиральная или ленточная пружина), успокоитель (жидкостный или магнитоиндукционный), корректор нулевого положения и отсчетное устройство (шкала и указатель).

6 слайд

Описание слайда:

7 слайд

Описание слайда:

В зависимости от физических явлений, положенных в основу создания вращающего момента, или, другими словами, от способа преобразования электромагнитной энергии, подводимой к прибору, в механическую энергию перемещения подвижной части электромеханические приборы делятся на следующие основные системы: магнитоэлектрические, электромагнитные, электродинамические, ферродинамические, электростатические, индукционные.

8 слайд

Описание слайда:

Принцип действия ИМ различных групп приборов основан на взаимодействии: магнитоэлектрических ИМ - магнитных полей постоянного магнита и проводника с током; электро­магнитных - магнитного поля, создаваемого проводником с током, и ферромагнитного сердечника; электродинамических (и ферродинамических) - магнитных полей двух систем проводников с токами; электростатических - двух систем заряженных электродов; индукционных - переменного магнитного поля проводника с током и индуцирован­ных этим полем вихревых токов в по­движном элементе -в результате создается вращающий момент МВР.

9 слайд

Описание слайда:

В зависимости от способа создания противодействующего момента Мa электромеханические СИ подразделяют- ся на две группы: - с механическим противодействующим моментом; - с электрическим противодействующим моментом (логометры).

10 слайд

Описание слайда:

Логометр - электроизмерительный прибор для измерения отношения сил двух электрических токов. Подвижная часть выполнена в виде двух рамок, расположенных перпендикулярно. Когда по рамке логометра протекает ток, то при взаимодействии с магнитным полем постоянного магнита эллиптической формы (неподвижной частью логометра), создаётся вращающий момент, который передвигает стрелку прибора. Когда токи в обеих рамках равны, их вращающие моменты равны, стрелка прибора занимает нулевое положение. Если токи различны, подвижная часть прибора перемещается таким образом, что рамка с большим током оказывается в положении с большим зазором постоянного магнита (из-за его эллиптичности). В результате вращающий момент, создаваемый рамкой, уменьшается и становится равным вращающему моменту рамки с меньшим током. Логометр обычно применяется в приборах для измерения сопротивления, индуктивности, ёмкости, температуры. Логометр - это прибор, в котором нет спиральных пружин, создающих противодействующий момент при повороте стрелки, и показания которых не зависят от величины тока, а зависят от кратного отношения токов в катушках. Распространены логометры магнитоэлектрической, электродинамической, ферродинамической, электромагнитной системы. Например, логометром является магнитоэлектрический мегомметр, прибор для измерения температуры в комплекте с термометром сопротивления и др.

11 слайд

Описание слайда:

12 слайд

Описание слайда:

Магнитоэлектрические амперметры и вольтметры являются основными измерительными приборами в цепях постоянного тока Приборы магнитоэлектрической системы основываются на принципе взаимодействия тока катушки (рамки с током) и магнитного поля постоянного магнита. Неподвижная часть состоит из постоянного магнита 1, его полюсных наконечников 2 и неподвижного сердечника 3. В зазоре между полюсными наконечниками и сердечником существует сильное магнитное поле. Подвижная часть измерительного механизма состоит из легкой рамки 4, обмотка которой навивается на алюминиевый каркас, и двух полуосей 5, неподвижно связанных с каркасом рамки. Концы обмотки припаяны к двум спиральным пружинам 6, через которые в рамку подводится измеряемый ток. К рамке прикреплены стрелка 7 и противовесы 8. В зазоре между полюсными наконечниками и сердечником устанавливается рамка. Ее полуоси вставляются в стеклянные или агатовые подшипники. При прохождении тока по обмотке рамки, последняя стремится повернуться, но ее свободному повороту противодействуют спиральные пружины. И тому углу, на который рамка все же развернется, оказывается, соответствует определенная сила тока, который протекает по обмотке рамки. Иными словами, угол поворота рамки (стрелки) пропорционален силе тока. У амперметров и вольтметров измерительные механизмы в принципе одинаковы. Их отличие заключается лишь в электрическом сопротивлении рамок. У амперметра сопротивление рамки значительно меньше, чем у вольтметра.

13 слайд

Описание слайда:

При изменении направления тока изменяется направление вращающего момента (определяемое прави­лом левой руки). При включении прибора магнитоэлектрической системы в цепь переменного тока на катушку действуют быстро изменяющиеся по значению и направлению механические силы, среднее значение которых равно нулю. В результате стрелка прибора не будет отклоняться от нулевого положения. Поэтому эти приборы нельзя применять непосредственно для измерений в цепях переменного тока. Успокоение (демпфирование) стрелки в приборах магнитоэлектрической системы происходит благодаря тому, что при перемещении алюминиевой рамки в магнитном поле постоянного магнита NS в ней индуктируются вихревые токи. В результате взаимодействия этих токов с магнитным полем возникает момент, действующий на рамку в направлении, противополож­ном ее перемещению, вызывая быстрое успокоению колебаний рамки.

14 слайд

Описание слайда:

1) с подвижной катушкой и неподвижным магнитом; 2) с подвижным магнитом и неподвижной катушкой. с внешним магнитом с внутренним магнитом условное обозначение 1 – неподвижный постоянный магнит; 2 - магнитопровод; 3- сердечник; 4 – рамка; 5 – пружина; 6- стрелка

15 слайд

Описание слайда:

16 слайд

Описание слайда:

Достоинства: большая чувствительность, высокая точность, равномерная шкала, малое собственное потребление мощности, малое влияние внешних магнитных полей благодаря сильному собственному магнитному полю. Недостатки: сложность конструкции, высокая стоимость, непригодность к работе в цепях переменного тока чувствительность к перегрузкам и изменениям тока.

17 слайд

Описание слайда:

Применение: в качестве амперметров и вольт­метров постоянного тока с преде­лами измерений от наноампер до килоампер и от долей милливоль­та до киловольт, гальванометров постоянного тока, гальваномет­ров переменного тока и осциллографических гальванометров; в сочетании с различного рода преобразователями переменного тока в постоянный они используются для измерений в цепях переменного тока.

18 слайд

Описание слайда:

Подготовить презентации: Магнитоэлектрические гальванометры Магнитоэлектрические логометры Магнитоэлектрические омметры Магнитоэлектрические амперметры и вольтметры

19 слайд

Описание слайда:

Приборы электромагнитной системы работают на принципе втягивания металлического якоря в катушку, когда по ней проходит электрический ток. Принцип работы приборов электромагнитной системы основан на взаимодействии магнитного поля, созданного неподвижной катушкой, по обмотке которой протекает измеряемый ток, с одним или несколькими ферромагнитными сердечниками, укрепленными на оси. Неподвижная катушка 3 представляет собой каркас с навитой изолированной медной лентой. Когда по катушке протекает измеряемый ток, в ее плоской щели создается магнитное поле. Сердечник 5 со стрелкой 4 укреплен на оси 1. Магнитное поле катушки намагничивает сердечник и втягивает его во внутрь щели, поворачивая ось со стрелкой. Спиральная пружина 2 создает противодействующий момент Мпр 1 – ось 2 – спиральная пружина 3 – катушка 4 – стрелка 5 – сердечник 6 - успокоитель

20 слайд

Описание слайда:

Преимущества простота конструкции, способность измерять постоянные и переменные токи, способность выдерживать большие перегрузки, невысокая стоимость. Недостатки влияние на показания приборов внешних магнитных полей, неравномерная шкала (квадратичная, т.е.сжата в начале и растянута в конце), малая чувствительность, невысокая точность, большое собственное потребление мощности.

21 слайд

Описание слайда:

Приборы ЭМ системы применяют в основном как щитовые амперметры и вольтметры переменного тока промышленной частоты класса точности 1,0 и более низких классов для измерений в цепях переменного тока, в переносных многопредельных приборах класса точности 0,5.

22 слайд

Слайд 2

Термины и определения

ГОСТ 30012.1-2002 «ПРИБОРЫ АНАЛОГОВЫЕ ПОКАЗЫВАЮЩИЕ ЭЛЕКТРОИЗМЕРИТЕЛЬНЫЕ ПРЯМОГО ДЕЙСТВИЯ И ВСПОМОГАТЕЛЬНЫЕ ЧАСТИ К НИМ. Часть 1. Определения и основные требования, общие для всех частей» Электроизмерительный прибор – прибор, предназначенный для измерения электрической или неэлектрической величины электрическими средствами Аналоговый прибор – измерительный прибор, предназначенный для представления или индикации выходной информации в виде непрерывной функции измеряемой величины.

Слайд 3

КЛАССИФИКАЦИЯ ЭИП

  • Слайд 4

    Классификация ЭИП

  • Слайд 5

    По форме отсчета: К показывающим относят только те, у которых возможно только считывание показаний. К регистрирующим относятся те, которые позволяют делать запись значений измеряемых величин.

    Слайд 6

    Слайд 7

    По методу преобразования: Приборы прямого преобразования предполагают наличие последовательного преобразования сигналов. Приборы обратного преобразования предполагают наличие обратной связи.

    Слайд 8

    По измеряемой величине: вольтметры (для измерения напряжения и ЭДС); амперметры (для измерения силы тока); ваттметры (для измерения электрической мощности); счетчики (для измерения электрической энергии); омметры, мегаомметры (для измерения электрического сопротивления); частотомеры (для измерения частоты переменного тока); фазометры

    Слайд 9

    По принципу действия: магнитоэлектрические; электромагнитные; электродинамические; ферродинамические; электростатические; термоэлектрические и др.

    Слайд 10

    Магнитоэлектрический прибор - прибор, действие которого основано на взаимодействии магнитного поля, обусловленного током в катушке, с полем постоянного магнита. Электромагнитный прибор - прибор, действие которого основано на притяжении между подвижным сердечником из «мягкого» ферромагнитного материала и полем, создаваемым током, протекающим в неподвижной катушке (возможны и другие конструкции).

    Слайд 11

    электродинамический прибор: Прибор, действие которого основано на взаимодействии магнитного поля, обусловленного током подвижной катушки, с магнитным полем, обусловленным током в одной или более неподвижных катушках. ферродинамический прибор (электродинамический прибор с железным сердечником): электродинамический прибор, в котором электродинамический эффект видоизменяется за счет использования «мягкого» ферродинамического материала в магнитной цепи.

    Слайд 12

    электростатический прибор: Прибор, действие которого основано на эффектах электростатических сил между неподвижными и подвижными электродами. термоэлектрический прибор: Тепловой прибор, использующий ЭДС одной или более термопар, нагреваемых током, который необходимо измерить.

    Слайд 13

    ЭЛЕКТРОМЕханические приборы прямого преобразования

  • Слайд 14

    Функциональная схема

    В самом общем случае электромеханический прибор прямого преобразования состоит из трех основных частей: Измерительная цепь Измерительный механизм Отсчетное устройство В измерительном механизме электрическая энергия преобразуется в механическую энергию, перемещающую подвижную часть.

    Слайд 15

    Измерительная цепь - часть электрической цепи, которая является внутренней для прибора и его вспомогательных частей, возбуждаемая напряжением или током. Измерительная цепь может выполнять три функции: Служит для преобразования измеряемой величины в другую физическую величину, которая непосредственно действует на измерительный механизм; Изменяет масштаб измеряемой величины; Корректирует погрешности прибора.

    Слайд 16

    Измерительный механизм: Совокупность тех частей измерительного прибора, на которые воздействует измеряемая величина, в результате чего происходит перемещение подвижной части, соответствующее значению этой величины. Отсчетное устройство: Часть измерительного прибора, которая показывает значение измеряемой величины.

    Слайд 17

    МОМЕНТЫ

    Обычно у ЭИП применяется вращательное движение подвижной части, поэтому при рассмотрении функции измерительного механизма будут рассматриваться моменты, которые действуют на подвижную часть. В обычном измерительном механизме действует три основных момента: вращающий, противодействующий, успокоения.

    Слайд 18

    Вращающий момент– это момент, который возникает в измерительном механизме под действием измеряемой величины и поворачивающий подвижную часть в сторону увеличения показаний. Вращающий момент должен однозначно определяться измеряемой величиной и в общем случае может зависеть от положения подвижной части относительно начального.

    Слайд 19

    Если бы повороту подвижной части ничего не препятствовало, то подвижная часть вращалась бы до упора то есть огранивалось перемещение только конструкцией измерительного механизма. Чтобы отклонение подвижной части соответствовало определенному значению, нужно создать еще один момент. Такой момент создается в измерительном механизме и называется он противодействующий. Противодействующий момент так же приложен к подвижной части. Он направлен навстречу вращающему моменту и зависит только от положения подвижной части.

    Слайд 20

    По способу создания противодействующего момента приборы делят на две группы: С механическим противодействующим моментом; С электрическим противодействующим моментом – логометры. Если момент относится к 1 группе, то он создается с помощью упругих элементов, к которым относится спиральная пружина, растяжки и подвес. Логометр – прибор, у которого противодействующий момент, создан электрическим путем.

    Слайд 21

    Функция преобразования

    Слайд 22

    В момент равновесия подвижная часть замирает. Этот вариант называется установившееся отклонение подвижной части измерительного механизма. Если известны аналитические выражения обоих моментов, то можно выразить отклонение от начального положения в виде функции от измеряемой величины. Это выражение называется функцией преобразования измерительного механизма. Для определения числового значения измеряемой величины все приборы снабжаются отсчетными устройствами, в состав которых входят шкала и указатель. На шкале наносятся отметки. Характер расположения отметок на шкале зависит от функции преобразования механизма и некоторых конструктивных особенностей механизма. Указатель – это перемещающаяся над шкалой стрелка, которая жестко скреплена с подвижной частью прибора.

    Слайд 23

    УСПОКОЕНИЕ

    После включения прибора в цепь измеряемой величины или после изменения последней до момента установления указателя, когда можно произвести отсчет, проходит некоторое время (время переходного процесса), зависящее от типа измеряемого механизма и его конструкции. Желательно, чтобы это запаздывание было наименьшим. Запаздывание показаний прибора характеризуется так называемым временем успокоения. Время успокоения – промежуток времени, прошедший с момента изменения измеряемой величины до момента, когда указатель прибора не удаляется от окончательного положения более чем на 1,5% от длины шкалы. Время успокоения для большинства типов электромеханических приборов не должно превышать 4 с.

    Слайд 24

    Чтобы обеспечить требуемое время успокоения все приборы непосредственной оценки снабжают специальными устройствами, с помощью которых значительно уменьшается время успокоения прибора. Это так называемые успокоители. Успокоители создают успокаивающий момент, который возникает только при движении подвижной части. Различают следующие типы успокоителей: воздушные, жидкостные и магнитоиндукционные. Наибольшее применение получили воздушные и магнитоиндукционные успокоители.

    Посмотреть все слайды

    Слайд 1

    Описание слайда:

    Слайд 2

    Описание слайда:

    Слайд 3

    Описание слайда:

    Слайд 4

    Описание слайда:

    Слайд 5

    Описание слайда:

    Слайд 6

    Описание слайда:

    Слайд 7

    Описание слайда:

    Берут лёгкую алюминиевую рамку 2 прямоугольной формы, наматывают на неё катушку из тонкого провода. Рамку крепят на двух полуосях О и О", к которым прикреплена также стрелка прибора 4. Ось удерживается двумя тонкими спиральными пружинами 3. Силы упругости пружин, возвращающие рамку к положению равновесия в отсутствие тока, подобраны такими, чтобы были пропорциональными углу отклонения стрелки от положения равновесия. Катушку помещают между полюсами постоянного магнита М с наконечниками формы полого цилиндра. Внутри катушки располагают цилиндр 1 из мягкого железа. Такая конструкция обеспечивает радиальное направление линий магнитной индукции в области нахождения витков катушки (см рисунок). В результате при любом положении катушки силы, действующие на неё со стороны магнитного поля, максимальны и при неизменной силе тока постоянны. Берут лёгкую алюминиевую рамку 2 прямоугольной формы, наматывают на неё катушку из тонкого провода. Рамку крепят на двух полуосях О и О", к которым прикреплена также стрелка прибора 4. Ось удерживается двумя тонкими спиральными пружинами 3. Силы упругости пружин, возвращающие рамку к положению равновесия в отсутствие тока, подобраны такими, чтобы были пропорциональными углу отклонения стрелки от положения равновесия. Катушку помещают между полюсами постоянного магнита М с наконечниками формы полого цилиндра. Внутри катушки располагают цилиндр 1 из мягкого железа. Такая конструкция обеспечивает радиальное направление линий магнитной индукции в области нахождения витков катушки (см рисунок). В результате при любом положении катушки силы, действующие на неё со стороны магнитного поля, максимальны и при неизменной силе тока постоянны.

    Слайд 8

    Описание слайда:

    Слайд 9

    Описание слайда:

    Слайд 10

    Описание слайда:

    Слайд 11

    1 слайд

    Измерительные приборы Измери тельный прибо р - средство измерений, предназначенное для получения значений измеряемой физической величины в установленном диапазоне. Часто измерительным прибором называют средство измерений для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия оператора.

    2 слайд

    Динамометр Динамо ме тр (от др.-греч. δύναμις - «сила» и μέτρεω - «измеряю») - прибор для измерения силы или момента силы, состоит из силового звена (упругого элемента) и отсчетного устройства. В силовом звене измеряемое усилие вызывает деформацию, которая непосредственно или через передачу сообщается отсчётному устройству. Динамометром можно измерять усилия от долей ньютонов (н, долей кгс) до 1 Мн (100 тс). По принципу действия различают динамометры механические (пружинные или рычажные), гидравлические и электронные. Иногда в одном динамометре используют два принципа. Для измерения силы сжатия дверей и ворот и других устройств с электрическими, гидравлическими и пневматическими приводами, на соответствие требованиям общеевропейских технических стандартов, существует класс динамометров под общим названием Приборы для измерения силы сжатия. Наиболее известными представителями этого класса измерительных приборов, являются: BIA Klasse 1, FM100, FM200, FM300 немецкой фирмы Drive Test GmbH. В пружинных динамометрах с винтовой пружиной при растяжении пружины происходят деформации двух видов: деформация изгиба и деформация

    3 слайд

    Барометр В жидкостных барометрах давление измеряется высотой столба жидкости (ртути) в трубке запаянной сверху, а нижним концом опущенной в сосуд с жидкостью (атмосферное давление уравновешивается весом столба жидкости). Ртутные барометры - наиболее точные, используются на метеостанциях. В быту обычно используются механические барометры (Анероид). В анероиде жидкости нет (греч. «анероид» – «безводный»). Он показывает атмосферное давление, действующее на гофрированную тонкостенную металлическую коробку, в которой создано разрежение. При понижении атмосферного давления коробка слегка расширяется, а при повышении – сжимается и воздействует на прикрепленную к ней пружину. На практике часто используется несколько (до десяти) анероидных коробок, соединенных последовательно, и имеется рычажная передаточная система, которая поворачивает стрелку, движущуюся по круговой шкале, проградуированной по ртутному барометру.

    4 слайд

    Амперметр Наиболее распространены амперметры, в которых движущаяся часть прибора со стрелкой поворачивается на угол, пропорциональный величине измеряемого тока. Амперметры бывают магнитоэлектрическими, электромагнитными, электродинамическими, тепловыми, индукционными, детекторными, термоэлектрическими и фотоэлектрическими. Магнитоэлектрическими амперметрами измеряют силу постоянного тока; индукционными и детекторными - силу переменного тока; амперметры других систем измеряют силу любого тока. Самыми точными и чувствительными являются магнитоэлектрические и электродинамические амперметры.

    5 слайд

    Ручные пружинные весы Ручные пружинные весы - ручной прибор для измерения веса или массы, ручной динамометр. Как правило предназначенный для бытового применения. Представляют собой достаточно жёсткую пружину, которая помещается в корпус со шкалой. К пружине прикрепляется стрелка. Пока к пружине не приложено усилие, то есть не подвешен измеряемый груз, она находится в сжатом состоянии. Под действием силы тяжести пружина растягивается, соответственно перемещается по шкале стрелка. На основании положения стрелки можно узнать массу взвешиваемого груза. Пружинные могут оснащаться дополнительно системой вращающихся шестерёнок, что позволяет измерять массу предметов ещё точнее. Последние модели бытовых весов делают электронными. Иногда ручные пружинные весы также называют безменом

    6 слайд

    Градусник Термо метр (греч. θέρμη - тепло и μετρέω - измеряю) - прибор для измерения температуры воздуха, почвы, воды и так далее. Существует несколько видов термометров: Жидкостные, электрические, оптические, газовые.

    7 слайд

    История изобретения Изобретателем термометра принято считать Галилея: в его собственных сочинениях нет описания этого прибора, но его ученики, Нелли и Вивиани, засвидетельствовали, что уже в 1597 г. он устроил нечто вроде термобароскопа. Галилей изучал в это время Герона Александрийского, у которого уже описано подобное приспособление, но не для измерения степеней тепла, а для поднятия воды при помощи нагревания. Изобретение термометра также приписывают лорду Бэкону, Роберт Фладду, Санкториусу, Скарпи, Корнелию Дреббелю (Cornelius Drebbel), Порте и Саломону де Каус, писавшим позднее и частью имевшим личные сношения с Галилеем. Все эти термометры были воздушные и состояли из сосуда с трубкою, содержащего воздух, отделенный от атмосферы столбиком воды; они изменяли свои показания и от изменения температуры, и от изменения атмосферного давления. Термометры с жидкостью описаны в первый раз в 1667 г. «Saggi di naturale esperienze fatte nell’Accademia del Cimento», где о них говорится как о предметах, давно изготовляемых искусными ремесленниками, которых называют «Confia», разогревающими стекло на раздуваемом огне лампы и выделывающими из него удивительные и очень нежные изделия. Сначала эти термометры наполняли водою, и они лопались, когда она замерзала; употреблять для этого винный спирт начали по мысли великого герцога тосканского Фердинанда II. Флорентинcкие термометры не только изображены в «Saggi», но сохранились в нескольких экземплярах до нашего времени в Галилеевском музее, во Флоренции; их приготовление описывается подробно. Сначала мастер должен был сделать деления на трубке, соображаясь с относительными размерами ее и шарика: деления наносились расплавленною эмалью на разогретую на лампе трубку, каждое десятое обозначалось белою точкою, а другие черными. Обыкновенно делали 50 делений таких, чтобы при таянии снега спирт не опускался ниже 10, а на солнце не поднимался выше 40. Хорошие мастера делали такие термометры настолько удачно, что все термометры показывали одно и то же при одинаковых условиях, но это никому не удавалось достигнуть, если трубку разделяли на 100 или 300 частей, чтобы получить большую чувствительность. Наполняли термометры при посредстве подогревания шарика и опускания конца трубки в спирт, но оканчивали наполнение при помощи стеклянной воронки с тонко оттянутым концом, свободно входившим в довольно широкую трубку. После регулирования количества жидкости, отверстие трубки запечатывали сургучом, называемым «герметическим». Из этого ясно, что эти термометры были большие и могли служить для определения температуры воздуха, но были еще неудобны для других, более разнообразных опытов, и градусы разных термометров были не сравнимы между собою. В 1703 г. Амонтон (Guillaume Amontons) в Париже усовершенствовал воздушный термометр, измеряя не расширение, а увеличение упругости воздуха, приведенного к одному и тому же объему при разных температурах подливанием ртути в открытое колено; барометрическое давление и его изменения при этом принимались во внимание. Нулем такой шкалы должна была служить «та значительная степень холода», при которой воздух теряет всю свою упругость (то есть современный абсолютный нуль), а второю постоянною точкою - температура кипения воды. Влияние атмосферного давления на температуру кипения не было еще известно Амонтону, а воздух его термометре не был освобожден от водяных газов; поэтому из его данных абсолютный нуль получается при 239,5° стоградусной современной шкалы. Другой воздушный термометр Амонтона, очень несовершенно выполненный, был независим от изменений атмосферного давления: он представлял сифонный барометр, открытое колено которого было продолжено кверху, наполнено сначала крепким раствором поташа, сверху нефтью и оканчивалось запаянным резервуаром с воздухом. Современную форму термометру придал Фаренгейт и описал свой способ приготовления в 1723 г. Первоначально он тоже наполнял свои трубки спиртом и лишь под конец перешел к ртути. Нуль своей шкалы он поставил при температуре смеси снега с нашатырем или поваренною солью, но при температуре «начинающегося замерзания воды» он ставил 32°, а 96° при температура здорового человеческого тела, во рту или под мышкой. Впоследствии он нашел, что вода кипит при 212° и эта температура была всегда одна и та же при том же стоянии барометра. Окончательно установил обе постоянные точки, тающего льда и кипящей воды, шведский физик Цельсий в 1742 г., но первоначально он ставил 0° при точке кипения, а 100° при точке замерзания, и принял обратное обозначение лишь по совету М. Штёрмера. Сохранившиеся экземпляры термометров Фаренгейта отличаются тщательностью исполнения. Работы Реомюра в 1736 г. хотя и повели к установлению 80° шкалы, но были скорее шагом назад против того, что сделал уже Фаренгейт: термометр Реомюра был громадный, к употреблению неудобный, а его способ разделения на градусы неточный и неудобный. После Фаренгейта и Реомюра дело изготовления термометров попало в руки мастеровых, так как термометры стали предметом торговли. Изобретателем термометра принято считать Галилея: в его собственных сочинениях нет описания этого прибора, но его ученики, Нелли и Вивиани, засвидетельствовали, что уже в 1597 г. он устроил нечто вроде термобароскопа. Галилей изучал в это время Герона Александрийского, у которого уже описано подобное приспособление, но не для измерения степеней тепла, а для поднятия воды при помощи нагревания. Изобретение термометра также приписывают лорду Бэкону, Роберт Фладду, Санкториусу, Скарпи, Корнелию Дреббелю (Cornelius Drebbel), Порте и Саломону де Каус, писавшим позднее и частью имевшим личные сношения с Галилеем. Все эти термометры были воздушные и состояли из сосуда с трубкою, содержащего воздух, отделенный от атмосферы столбиком воды; они изменяли свои показания и от изменения температуры, и от изменения атмосферного давления. Сначала мастер должен был сделать деления на трубке, соображаясь с относительными размерами ее и шарика: деления наносились расплавленною эмалью на разогретую на лампе трубку, каждое десятое обозначалось белою точкою, а другие черными. Обыкновенно делали 50 делений таких, чтобы при таянии снега спирт не опускался ниже 10, а на солнце не поднимался выше 40. Хорошие мастера делали такие термометры настолько удачно, что все термометры показывали одно и то же при одинаковых условиях, но это никому не удавалось достигнуть, если трубку разделяли на 100 или 300 частей, чтобы получить большую чувствительность. Наполняли термометры при посредстве подогревания шарика и опускания конца трубки в спирт, но оканчивали наполнение при помощи стеклянной воронки с тонко оттянутым концом, свободно входившим в довольно широкую трубку. После регулирования количества жидкости, отверстие трубки запечатывали сургучом, называемым «герметическим». Из этого ясно, что эти термометры были большие и могли служить для определения температуры воздуха, но были еще неудобны для других, более разнообразных опытов, и градусы разных термометров были не сравнимы между собою. В 1703 г. Амонтон (Guillaume Amontons) в Париже усовершенствовал воздушный термометр, измеряя не расширение, а увеличение упругости воздуха, приведенного к одному и тому же объему при разных температурах подливанием ртути в открытое колено; барометрическое давление и его изменения при этом принимались во внимание. Нулем такой шкалы должна была служить «та значительная степень холода», при которой воздух теряет всю свою упругость (то есть современный абсолютный нуль), а второю постоянною точкою - температура кипения воды. Влияние атмосферного давления на температуру кипения не было еще известно Амонтону, а воздух его термометре не был освобожден от водяных газов; поэтому из его данных абсолютный нуль получается при 239,5° стоградусной современной шкалы. Другой воздушный термометр Амонтона, очень несовершенно выполненный, был независим от изменений атмосферного давления: он представлял сифонный барометр, открытое колено которого было продолжено кверху, наполнено сначала крепким раствором поташа, сверху нефтью и оканчивалось запаянным резервуаром с воздухом. Современную форму термометру придал Фаренгейт и описал свой способ приготовления в 1723 г. Первоначально он тоже наполнял свои трубки спиртом и лишь под конец перешел к ртути. Нуль своей шкалы он поставил при температуре смеси снега с нашатырем или поваренною солью, но при температуре «начинающегося замерзания воды» он ставил 32°, а 96° при температура здорового человеческого тела, во рту или под мышкой. Впоследствии он нашел, что вода кипит при 212° и эта температура была всегда одна и та же при том же стоянии барометра. Окончательно установил обе постоянные точки, тающего льда и кипящей воды, шведский физик Цельсий в 1742 г., но первоначально он ставил 0° при точке кипения, а 100° при точке замерзания, и принял обратное обозначение лишь по совету М. Штёрмера. Сохранившиеся экземпляры термометров Фаренгейта отличаются тщательностью исполнения. Работы Реомюра в 1736 г. хотя и повели к установлению 80° шкалы, но были скорее шагом назад против того, что сделал уже Фаренгейт: термометр Реомюра был громадный, к употреблению неудобный, а его способ разделения на градусы неточный и неудобный. После Фаренгейта и Реомюра дело изготовления термометров попало в руки мастеровых, так как термометры стали предметом торговли.

    9 слайд

    Дози метр - устройство для измерения дозы или мощности дозы ионизирующего излучения, полученной прибором (и тем, кто им пользуется) за некоторый промежуток времени, например, за период нахождения на некоторой территории или за рабочую смену. Измерение вышеописанных величин называется дозиметрией. Иногда «дозиметром» не совсем точно называют радиометр - прибор для измерения активности радионуклида в источнике или образце (в объеме жидкости, газа, аэрозоля, на загрязненных поверхностях) или плотности потока ионизирующих излучений для проверки на радиоактивность подозрительных предметов и оценки радиационной обстановки в данном месте в данный момент. Измерение вышеописанных величин называется радиометрией. Рентгенметр - разновидность радиометра для измерения мощности гамма-излучения.

    Оптические приборы вооружающие глаз

    Изображения рассматриваемых предметов являются мнимыми.

    Угловое увеличение – отношение угла зрения при наблюдении предмета через оптический прибор к углу зрения при наблюдении невооруженным глазом (характеристика оптического прибора).

    Лупа

    Лупа – собирающая линза или система линз с малым фокусным расстоянием.

    h d 0

    Угол зрения, под которым виден предмет невооруженным глазом.

    d0 =25см – расстояние наилучшего зрения. h – линейный размер предмета.

    Лупу помещают близко к глазу, а предмет располагают в ее фокальной плоскости.

    h - угол, под которым в лупу виден

    F предмет.

    Fd – фокусное расстояние лупы.

    Г 0 - угловое увеличение лупы.

    Увеличение, даваемое лупой, ограничено ее размерами.

    Лупы применяют часовых дел мастера, геологи, ботаники, криминалисты.

    Микроскоп

    Микроскоп представляет собой комбинацию двух линз или систем линз.

    Линза О1 , обращенная к предмету называется объективом

    (дает действительное увеличение изображения предмета). Линза О2 – окуляр .

    Предмет помещают между фокусом объектива и точкой, находящейся на двойном фокусном расстоянии. Окуляр размещают так, чтобы изображение совпадало с фокальной

    Увеличением микроскопа называется отношение угла зрения φ, под которым виден предмет при наблюдении через микроскоп, к углу зрения ψ при наблюдении невооруженным глазом с расстояния наилучшего зрения

    d0 =25см.

    Гм

    Увеличение микроскопа

    Для лупы.

    Для микроскопа,

    h’ – линейный размер изображения, даваемого

    объективом. F2 – фокусное расстояние окуляра.

    Линейный размер изображения в объективе связан с линейным размером предмета соотношением:

    f F1

    F1 – фокусное расстояние объектива.

    Оптическая длина тубуса микроскопа

    (расстояние между задним объектива и

    передним фокусом окуляра).

    Увеличение микроскопа: от нескольких

    десятков до 1500.

    F1 F2

    Микроскоп позволяет различать мелкие

    детали предмета, которые при наблюденииUchim.net

    невооруженным глазом или с помощью лупы

    Труба Кеплера

    В 1613 г. была изготовлена Кристофом Шайнером по схеме Кеплера.

    Кеплер (1571 – 1630)

    Объектив – длиннофокусная линза, дающая действительное уменьшенное, перевернутое изображение предмета. Изображение удаленного предмета получается в фокальной плоскости объектива. Окуляр находится от этого изображения на своем фокусном расстоянии. Uchim.net

    Угловым увеличением зрительной трубы называется отношение угла зрения, под которым мы видим изображение предмета в трубе, к углу зрения, под которым мы видим тот

    же предмет непосредственно.

    Г Т - увеличение зрительной трубы.

    Увеличение зрительной трубы равно отношению фокусного

    расстояния объектива к фокусному расстоянию окуляра.

    ГТ F 1 F2

    Труба Кеплера дает перевернутое изображение.

    Бинокль

    Бинокль представляет собой две зрительные трубы, соединенные вместе для наблюдения предмета двумя глазами.

    Призменный бинокль.

    Для уменьшения размеров применяемых в бинокле труб Кеплера и переворачивания изображения используются прямоугольные призмы полного отражения.

    Труба

    ГалилейГалилея в 1609 году конструирует собственноручно первый телескоп.

    Галилео Галилей (1564- 1642)

    Лучи, идущие от предмета, проходят через собирающую линзу и становятся сходящимися (дали бы перевернутое, уменьшенное изображение). Затем они попадают на рассеивающую линзу и становятся расходящимися. Они дают

    мнимое, прямое, увеличенное изображение предмета.

    С помощью своей трубы с 30-кратным увеличением Галилей сделал ряд астрономических открытий: Обнаружил горы на Луне, пятна на Солнце, открыл четыре спутника Юпитера, фазы Венеры, установил, что Млечный Путь состоит из множества звезд.

  • В продолжение темы:
    Linux

    Социальная сеть «Фотострана» многим не нравится своей навязчивостью, что также проявляется, когда пользователь желает удалить свой аккаунт. В самой сети есть подводные камни,...

    Новые статьи
    /
    Популярные