Светодиод — источник света нового поколения. Кпд светодиодных ламп

Технико-экономические показатели светильников

На ТЭП светильника существенным образом влияет тип и качество исполнение оптических систем светильника. Уровень КПД зависит от коэффициента мощности ПРА и оптического эффективности устройства, а так же состояния оптики. Ряд отечественного оборудования и большинство зарубежных образцов имеют высокие показатели коэффициентов. Однако какими бы хорошими эти показатели не были, оптика (свето-прозрачная крышка, рассеивающая или собирающая линза и отражающие рефлекторы) в процессе эксплуатации загрязняется, претерпевает значительные изменения структур поверхностей, что приводит к ухудшению параметров. Это утверждение касается любых типов светильников, независимо от того, используется ПРА или нет.

В новых светильниках оптический КПД колеблется в пределах от 60 до 95%. В результате практических наблюдений и специальных лабораторных обследований выяснилось, что в период 1 года эксплуатации оптический КПД снижается до 35% от своей первоначальной величины (причем основной уровень потерь приходится на самые первые дни эксплуатации). В течение 2-х лет оптика теряет от 50 до 65% от своего первоначального уровня КПД.

Наблюдаемые приборы эксплуатировались на улице (уличное освещение) на территории Республики Татарстан, в обычных не экстремальных условиях. Понятно, что если условия эксплуатация предполагают работу осветительного оборудования в условиях повышенной запыленности или загазованности, то оптический КПД снижается более быстрыми темпами.

*Замеры оптических и электрических свойства производились силами специалистов ГК «ТАТЛЕД» на собственной базе.

(Световой поток, Ф ; Распределение общего светового потока по 2-м любым уровням силы света или углам излучения в пределах диаграммы направленности, Ф(Ω) ,

Данные об измерительном оборудовании в Приложении 1.

Как правило, задача защиты светильников (особенно их внутреннего объема) от неблагоприятных факторов воздействия внешней среды решается производителями осветительного оборудования путем уплотнения между корпусами закрытых световых приборов и защитными стеклами, а также уплотнения узлов ввода проводов.

Однако, при более детальном изучении проблемы выяснилось что этого недостаточно для обеспечения должной изоляции внутреннего объема светильника. Согласно законам термодинамики, в закрытых световых приборах наблюдается эффект «дыхания», связанный с изменением давления воздуха, заключенного во внутреннем изолированном объеме светового прибора. При включении источника света прибора и нагревании заключенного внутри прибора воздуха, возрастает давление, а при выключении давление падает. В результате даже незаметного дефекта уплотнения, происходит всасывание загрязненного воздуха во внутреннюю полость светильника. Это явление представляет возможность оседания пыли, волокон и коррозионных частиц на колбе лампы, отражателе, внутренней поверхности, защитном стекле, рассеивателе и контактных узлах патронов. В результате осветительная способность приборов падает и они сами выходят из строя в течение короткого периода эксплуатации (например, в некоторых зонах металлургического производства осветительные приборы заменяются ежегодно, существенно увеличивая затраты на эксплуатацию системы освещения).

Светодиодные светильники лишены вышеуказанного недостатка. Дело в том, что используемые в таких светильниках светодиоды не требуют отражающих рефлекторов.

В световых приборах, использующих обычные источники света, встраивается отражающий рефлектор, форму которого не всегда удается выстроить в соответствии с требованиями светового распределения. В отличии от обычных светильников светодиодные приборы используют источники света, излучающие световую энергию не во всех направлениях, а в одном. Направленность и интенсивность светового потока регулируется расположением осей светового излучателя в заданном направлении и их количеством. Угол раскрытия испускаемого излучения регулируется с помощью вторичной оптики (микролинзы).

Таким образом, светодиодный светильник лишен недостатков, вызываемых потерями в оптических системах, используемых всенаправленные источники света. То-есть показатель отношение Люмен/Ватт у светильников на СИД более привлекательное.

В люменах измеряется поток во всех направлениях, т.е. в телесном угле 4пи. Один люмен равен световому потоку, испускаемому точечным изотропным источником, c силой света, равной одной канделе, в телесный угол величиной в один стерадиан (1 лм = 1 кд × ср)

Стерадиан равен телесному углу с вершиной в центре сферы радиусом R, вырезающему на поверхности сферы площадь, равную площади квадрата со стороной R (то есть R²). Если такой телесный угол имеет вид кругового конуса, то угол его раскрытия составит приблизительно 65,541° или 65°32′28″).

Если предположить, что расчетный конус направлен непосредственно на освещаемый объект, то остальная часть световой энергии попадает на освещаемую поверхность посредством рефлектора или оптических линз.
Кандела (от лат. candela — свеча), единица силы света Международной системы единиц. Обозначение: русское кд, международное cd. Кандела (единица силы света) — сила света, испускаемого с площади 1/600000 м2 сечения полного излучателя в перпендикулярном этому сечению направлении при температуре излучателя, равной температуре затвердевания платины (2042 К) при давлении 101325 н/м2.

Исходя из вышеизложенного для сравнения ТЭП светильников с обычным источником света и светодиодным светильником, необходимо вводить поправку на различие КПД оптических систем.

Рассмотрим в качестве конкретного примера получивший широкое распространение осветительный прибор РКУ15-250 с использованием лампы ДРЛ и светильник на СИД.

Для определения реальных светотехнических показателей производим следующие вычисления:

По данным завода-производителя КПД светильника РКУ15 равен 65%. Источник света (лампа ДРЛ-250 (В)) имеет уровень светового потока 13 200 Люмен. Получаем уровень реально излучаемого прибором светового потока: 65% от 13 200 lm = 8 580 Люмен.

Так же необходимо учесть ускоренную потерю уровня светового потока ДРЛ в первые 1000 часов наработки. Из приведенного ниже графика (по данным ВНИСИ) видно, что в течение первых 1000 часов эксплуатации уровень излучаемого светового потока снижается на 15-20% от начальной величины. Отсюда получаем Фv = 6 864 Люмен. В течение дальнейшего срока эксплуатации деградация происходит менее интенсивно.

Кривая уровня светового потока СИД, используемых в светодиодных светильниках, также имеет неравномерную характеристику. Однако, как видно из приведенного ниже графика (предоставлено OSRAM Opto Semiconductors), после кратковременного спада уровень постепенно повышается (диоды Golden Dragon plus).

(«Светотехника», Лихославль)

с лампой ДРЛ-250 (В)

(«Лисма», Саранск)

SVETECO 48/6624/80/Ш

(«Ledel», Казань)

Светодиоды OSRAM

(«Osram», Германия)

Параметры лампы,

(без учета оптических потерь в светильнике)

номинальное напр. В - 130

номинальная мощность, Вт - 250

световой поток, Люм - 13 200

продолжительность гор. ч - 12 000

Параметры СИД (48 шт)

(оптических потерь в светильнике нет)

номинальное напр. В - 220 ± 22

номинальная мощность, Вт - 80

световой поток, Люм - 6 624

продолжительность гор. ч - 100 000

Общая стоимость 4 500 руб.

Общая стоимость 15 000 руб.

Длительность эксплуатации в год, ч - 2 920 (при 8 часов в сутки)

730

Количество потребленной энергии в год, кВт/час - 233

потребление в год - 2 190 руб.

потребление в год - 699 руб.

при стоимости 3 руб. - кВт/час

Расходы на обслуживание светильника, ПРА, замену и утилизацию ламп, руб. в год - 600 руб.

Расходы на обслуживание, руб. в год - 0 руб.

Итого расходов на приобретение и эксплуатацию в течение 1 года - 7 290 руб.

Итого расходов на приобретение и эксплуатацию в течение 1 года - 15 699 руб.

Дальнейшая эксплуатация,

руб. в год - 2 790 руб.

Дальнейшая эксплуатация,

руб. в год - 699 руб.

Всего затрат за 5 лет - 18 450 руб.

в том числе за электроэнергию - 10 950 руб.

при стоимости 3 руб. - кВт/час

Всего затрат за 5 лет - 18 495 руб.

в том числе за электроэнергию - 3 495 руб.

при стоимости 3 руб. - кВт/час

минимальная

Возможность дальнейшей эксплуатации:

выработано 40% ресурса

График стоимостей владения приборов в течение 5 лет

Данные приведены с учетом неизменной стоимости электроэнергии. Учитывая прогнозируемый Минэкономразвития рост тарифов точка пересечения кривых уровня затрат наступит ранее срока, полученного расчетами (предположительно 4 года).

Пример использования светильников ДРЛ и светодиодных светильников для освещения автодороги. Благодаря более рационально распределенной световой энергии полотно дороги, освещенное светодиодными светильниками (рисунок слева) залито более равномерно.

Вывод: оптические свойства светильников, использующих СИД, заметно превосходят по светотехническим параметрам светильники с обычными источниками света.

ПУСКОРЕГУЛИРУЮЩАЯ АППАРАТУРА (ПРА).

Пускорегулирующая аппаратура (ПРА) — это специальное изделие, с помощью которого осуществляется запуск и поддержание работы источника света.

Конструктивно ПРА может быть выполнено в виде единого блока или нескольких отдельных.

По типу источника света ПРА делятся:

  • ПРА для газоразрядных ламп
  • ПРА для галогенных ламп (трансформаторы)
  • ПРА для светодиодов (LED драйверы)

По типу устройства и функционирования ПРА бывают:

  • электромагнитные (ЭмПРА)
  • электронные (ЭПРА)

На эффективность осветительного приборы, помимо параметров оптики существенно оказывает параметр коэффициента мощности ПРА.

Для ПРА разрядных ламп этот параметр (по данным заводов-изготовителей) составляет от 0,6 до 0,9. Наиболее эффективными сегодня являются электронные ПРА, так как с помощью электроники возможность осуществлять зажигание и контролировать свечение можно осуществлять гораздо эффективнее, по сравнению с индуктивными дросселями. ПРА для разрядных ламп выпускается давно и, не смотря на продолжающееся совершенствование, хорошо известен потребителям, поэтому не рассматривается подробно в данной работе.

В светодиодных светильниках ПРА (LED-драйвер) выполняет функцию стабилизатора постоянного тока, стабилизаторов напряжения и диммирование (специализированные).

Драйверы можно подразделить на две основные группы:

1. Блоки питания светодиодов с постоянным стабилизированным выходным током (LED драйверы) - предназначены для питания светодиодов (или светодиодных светильников) соединенных последовательно.

2. Блоки питания со стабилизированным постоянным напряжением (светодиодные трансформаторы) - предназначены для питания групп светодиодов, которые уже снабжены ограничивающим ток резистором, обычно это светодиодные ленты, линейки или панели.

Помимо этого, поскольку промышленностью выпускаются светодиоды, рассчитанные на разные значения номинального тока, драйверы светодиодов подразделяются ещё и по этому параметру.

Наиболее распространенные значения тока - это 350 и 700 миллиампер.

Коэффициента мощности LED-драйверов у большинства производителей составляет значение 0,95. Отдельный светодиод требует постоянного напряжения 2-4В и несколько десятков mA тока. Последовательный массив светодиодов требует более высокого напряжения. LED-драйвер является источником этого напряжения. Он трансформирует питание бытовой электросети 110-240В переменного напряжения в низковольтное постоянное для питания LED систем.

К качеству ПРА для СИД предъявляются повышенные требования, так как СИД, являясь полупроводниковым устройством, чрезвычайно требователен к качеству электропитания. Отклонения от заданных параметров в пределах 2-5% резко сказывается на светотехнических и электрических свойствах СИД, и может привести к значительному сокращению срока жизни кристалла или люминофора.

Исходя из вышесказанного понятно, что качество ПРА для СИД изначально высокое, и соответственно является изделием, имеющим высокий КПД.

Подавляющим большинством производителей заявленными величинами являются значения от 0,90 до 0,95. Простые замеры подтверждают данные значения.

Для диммирования (изменение яркости свечения светодиодов) как правило, используются принцип широтно-импульсной модуляции (ШИМ).

По КПД и по степени надежности ПРА для разрядных ламп и ПРА для светодиодных светильников отличается только качеством схемотехники и используемой элементной базы, что в конечном итоге подразумевает разницу в стоимости изделия. Качественные и дорогие ПРА различных типов светильников приближаются к единому показателю (близко к 1).

В Приложении 2 и Приложении 3 отзывы организаций, внедрившие в качестве опытных образцов светодиодные светильники.

Вывод: влияние КПД ПРА на общий коэффициент полезного действия осветительного прибора для разрядных ламп и для светодиодных светильников не имеет заметной разницы, и обусловлены только ценой изделия.

Мечта о долговечном, практичном и экономном источнике света, который светит и не греет, стала реальной благодаря стремительному развитию полупроводниковых технологий. И, несмотря на то, что на сегодняшний день стоимость светодиода сравнительно высока, он скоро вполне может вытеснить другие, традиционные источники света. Как минимум, на ближайшие 15-20 лет беззаботное будущее ему уже обеспечено.

О светодиодах как источниках света, способных не только мерцать в елочных гирляндах, но и служить для полноценного освещения фасадов, интерьеров, придомовых территорий, парков и бассейнов, заговорили лет пять-шесть назад. А практика их применения в этой сфере началась буквально пару-тройку лет назад. И хотя такой срок для глобального анализа перспектив еще сравнительно мал, этот источник света все же вполне может вытеснить другие. Хотя бы потому, что на сегодняшний день традиционные источники освещения уже достигли своей максимальной световой эффективности, а светодиоды только приблизились к 10% своих возможностей. В качестве примера хотелось бы привести тот факт, что современные светодиоды светят уже в сто раз ярче, чем самые яркие светодиоды всего пять лет назад.

К ОПРЕДЕЛЕНИЮ

Светодиод, или светоизлучающий диод, изобретен в начале 1960-х годов англичанином Ником Холоньяком. Поэтому этот источник света еще называют LED (Light Emitting Diode).
Светодиод - это органический твердотелый источник света или полупроводниковый кристалл, который выполнен из пластов полимерного полупроводника. Светодиоды не содержат стекла, нитей накаливания, сменных деталей. Они миниатюрны, компактны, мощны. К тому же, излучают уникальный по своим характеристикам свет.

О ПРЕИМУЩЕСТВАХ И НЕДОСТАТКАХ

Преимуществ у светодиодов, по сравнению с классическими источниками света, множество. Среди них:

  • Экономичность потребления электроэнергии. Потребляемая мощность светодиодов - максимум 5 Вт. Светильники с этим источником света потребляют в 5-10 раз меньше энергии, чем светильники на основе галогеновых ламп и ламп накаливания с аналогичной яркостью. КПД преобразования светодиодом электрической энергии в световую на порядок выше, чем КПД обычной лампы накаливания. Например, обычная лампа накаливания мощностью 100 Вт имеет мощность светового излучения, эквивалентную всего 3-5 Вт. А светодиодный источник света, дающий такую же мощность светового излучения, потребляет не 100, а всего 1,5 Вт. Высокая экономичность потребления светодиодом электроэнергии особенно актуальна на современном этапе, так как растущие потребности человечества в освещении требуют увеличения производства электроэнергии. Для этого нужны дополнительные капиталовложения на строительство электростанций, выработку месторождений энергоносителей и последующую утилизацию отходов производства. К тому же на государственном уровне внедряется программа по энергосбережению. А светодиоды - это альтернативный высокоэффективный источник света, способный удовлетворить спрос на освещение, не наращивая при этом производства и затрат на электроэнергию.
  • Возможность работы от низковольтного питания. Светодиодные светильники можно устанавливать в местах, где нет сетевого питания (от 2,8 В до 28 В постоянного напряжения).
  • Высокий КПД. Для светодиодного светильника КПД составляет 75-90% (свет). А на выделение тепла уходит всего лишь 10-25%. Для сравнения: КПД лампы накаливания 5-10% - это свет. Остальные 90-95% уходят на бессмысленный нагрев окружающей среды.
  • Практичность в эксплуатации. Благодаря долговечности светодиодов нет необходимости в их частой замене и обслуживании установки.
  • Достаточная мощность излучения. Яркость светодиода, превышающая неон, ведет к большому увеличению расстояния восприятия информации человеческим глазом (это связано с почти монохроматичным излучением светодиода). Например, светодиод мощностью всего 1 Вт может осветить колонну высотой 6 метров.
  • Отсутствие чувствительности к изменениям в электросетях. Время реакции на изменения напряжения питания для светодиода измеряется десятками микросекунд, что значительно меньше аналогичных показателей для ламп накаливания. Светодиоды обладают низкой инерционностью, и могут без ущерба для себя работать в импульсном режиме.
  • Широкая цветовая гамма. Благодаря тому что излучение происходит в узкой полосе спектра, КПД цветных светодиодов значительно выше, чем КПД лампы накаливания с фильтром аналогичного оттенка. Основные цвета свечения светодиодов: красный, синий, зеленый, янтарный, бирюзовый, оранжевый, белый.
  • Динамическая смена цвета. Светодиодные источники света легко управляются любой электроникой. Им можно задавать практически любые цветовые и временные программы работы. А излучение светодиода можно регулировать, создавая красивейшие динамические и световые эффекты. Помимо статичного режима работы цвета можно смешивать, получая до 16 млн. оттенков, управлять ими, а также создавать различные динамические эффекты.
  • Противопожарная безопасность и безопасность для пользователя. Светодиоды практически не нагреваются, благодаря чему не создают пожароопасной ситуации. К тому же, в их свечении отсутствуют инфракрасное и ультрафиолетовое излучение, что делает их самым безопасным для глаз источником света.
  • Экологичность. Светодиоды не содержат ртути. И не требуют после завершения срока эксплуатации дорогостоящей утилизации.
  • Широкий спектр применения. Светодиоды сравнительно малы, что позволяет использовать их практически везде, например, размещать внутри практически любого устройства, или изготовить светодиодный светильник любой формы, цвета и дизайна.

Недостатков у светодиодов практически нет. Разве что - высокая, по сравнению с традиционными источниками света, цена. Но первоначальные затраты окупаются за счет низкого потребления электроэнергии и низкого расхода финансовых средств в течение периода эксплуатации. Например, эксплуатация светодиодных ламп обходится в 2,5-3 раза дешевле, чем ламп накаливания.

О ВОЗМОЖНОСТЯХ И ПРИМЕНЕНИИ

Возможности светодиодов чрезвычайно широки. С их помощью можно:

  • получать 100% света сразу при включении;
  • обеспечивать равномерную освещенность поверхности;
  • создавать яркие насыщенные цвета;
  • создавать и регулировать яркость и цветность света;
  • создавать конструкции светильников без необходимости замены ламп а также вандалозащищенные светильники;
  • «прятать» источник света, показывая только свет и т.д.

Спектр применения светодиодов достаточно велик. Их использование, например, оптимально, когда на освещение выделяется слишком малая для других источников света мощность. Также они могут стать незаменимыми в местах, где нежелательна частая и проблемная (в связи с труднодоступностью) замена традиционных ламп. Но особый интерес они могут представлять для дизайнеров и архитекторов, поскольку позволяют реализовать их самые смелые решения.

Светодиоды применяют для оформления интерьеров и экстерьеров, вывесок, витрин и указателей, архитектурного, декоративного освещения, а также веселого декоративного светосопровождения какого-либо праздника.
Светодиоды можно монтировать в стены, ступени, подиумы; использовать в качестве подсветок паркингов, пешеходных дорожек, ландшафта, фонтанов и бассейнов.

Поскольку светодиоды легко управляются электроникой, возможны точная направленность света, управление и регулирование цветом и интенсивностью излучения, миксирование цветов (что, в особенности, может быть интересно для создания сценического света, световых картин, графики, панно).
Светодиоды, благодаря монохромности, являются уникальными генераторами цветного света. Причем, живое богатство красок достигается гораздо эффективнее, чем в случае, если бы применялся светофильтр для стандартных источников света. Таким образом, с помощью светодиодов предметы, пространство и окружение можно свободно «раскрасить» глубокими живыми и яркими красками. Или изменить его простым нажатием кнопки пульта управления, создав определенную атмосферу в помещении.

На основе светодиодов можно изготавливать светильники любого цвета, дизайна, формы и конфигурации для бытовых и промышленных нужд, а также подводного использования. Такое разнообразие предоставляет широкую свободу выбора для любого варианта применения: горизонтального и вертикального, подвешивания, встраивания и т.д.

Таким образом, при помощи светодиодных технологий можно создать неповторимый архитектурный образ или уникальную и незабываемую атмосферу в местах отдыха и развлечений; подчеркнуть индивидуальность и неповторимый облик дома и сделать комфортными условия работы в офисе.

Недавно на одном сайте увидел калькулятор окупаемости светодиодных светильников. Мне сразу стало интересно, а через сколько лет окупит себя светодиодный светильник, поскольку на данный момент не каждый заказчик стремится установить у себя светодиодные светильники.

Если верить калькулятору, то офисный светодиодный светильник должен окупить себя уже через 3,68 года. Сейчас проверим на самом ли деле у нас получится такая цифра.

Для офиса НЕКИЙ производитель светодиодных светильников изготавливает встраиваемый светильник мощностью 42Вт, со световым потоком 3500лм, КПД=94%, индекс цветопередачи 80. Стоит такой светильник 175$. Данный светильник полностью заменяет светильник с люминесцентными лампами ЛВО 4×18, который стоит всего 25$. Как видим, светодиодный светильник для офисных помещений в 7 раз дороже светильника с люминесцентными лампами.

Для начала приведем сравнение двух светильников.

Светодиодный светильник
Аналог ЛВО11-4×18-503 СдВБ-15-196-042-022
Тип лампы Т8 Светодиоды
Потребляемая мощность, Вт 72 42
Световой поток, лм 4×1300 (5200) 3500
КДП, % 68 94
Срок службы, ч 20000 70000
Цена, $ 25 175

Теперь на основе этих данных посчитаем годовой расход электроэнергии и через сколько лет оправдает себя светодиодный светильник. В году у нас 2000 рабочих часов (у офисного работника). Люминесцентные лампы будем менять через 10000 часов, т.к. световой поток начнет падать.

Светильник с люминесцентными лампами Светодиодный светильник
0,072*2000=144 0,042*2000=84
Стоимость электроэнергии в год (0,05$*кВт-РБ), $ 144*0,05=7,2 84*0,05=4,2
Стоимость электроэнергии в год (0,1$*кВт-РФ), $ 144*0,1=14,4 84*0,1=8,4
Экономия в год на электроэнергии РБ, $ 7,2-4,2=3,0
Экономия в год на электроэнергии РФ, $ 14,4-8,4=6,0
Покупка светильников, $ 25 175
Обслуживание светильника в течение 10000 часов (5лет), $
Экономия в год с учетом расходных материалов РБ, $ (3,0*5+8)/5=4,6
Экономия в год с учетом расходных материалов РФ, $ (6,0*5+8)/5=7,6
Время окупаемости РБ (175-25)/4,6=32,6 года
Время окупаемости РФ (175-25)/7,6=19,7 года

Получился совсем плачевный результат.

Почему же тогда так получилось?

Все очень просто. Время окупаемости светодиодного светильника зависит от цены на электроэнергию и времени эксплуатации. Чем выше стоимость кВт*ч и количество часов работы, тем меньше срок окупаемости.

Проведя некоторые обратные вычисления, я понял, что производители светодиодных светильников совсем не жалеют нас (проектировщиков в том числе, т.к. мы тоже офисные работники), заставляют работать нас без выходных и установили на нас максимальный расчетный тариф за электроэнергию В общем они брали все по максимуму, чтобы получить минимальный срок окупаемости.

В этом случае у нас будет следующий результат .

Светильник с люминесцентными лампами Светодиодный светильник
Расход электроэнергии в год, кВт 0,072*2920=210,24 0,042*2920=122,64
Стоимость электроэнергии в год (0,14$*кВт), $ 210,24*0,14=29,4 122,64*0,14=17,2
Экономия в год на электроэнергии, $ 29,4-17,2=12,2
Покупка светильников и ламп, $ 25 175
Обслуживание светильника в течение 10000 часов (3 года), $ 4 – стоимость ламп; 4 – утилизация, замена ламп.
Экономия в год с учетом расходных материалов, $ (12,2*3+8)/3=14,9
Время окупаемости (175-25)/14,9=10 год

Честно говоря, я немного расстроен. Ожидал срок окупаемости светодиодного светильника хотя бы 5 лет. Производитель обещает 3,68 года, а на самом деле около 10 лет. Причем 10 лет, при условии, что офис будет работать без выходных и по максимальному расчетному тарифу.

Заявленные 70000 часов для светодиодного светильника это лишь теория, а на практике кто его знает, как он поведет себя через 5-10 лет.

Я думаю, к тому времени как он себя окупит, а по моим расчетам это 10 лет, этот светильник уже морально устареет, хоть и будет находиться в работоспособном состоянии.

В нынешних условиях производители светодиодных светильников будут только ЗА повышение цен на электроэнергию, поскольку применение светодиодных светлиьников на пряму зависит от цены на электроэнергию.

Светодиодные светильники выгодно ставить там, где высокая стоимость электроэнергии. Думаю это более актуально для стран Европы.

Может я не все учел или у вас имеется более точная информация по данной теме?

P.S. Я совсем не против светодиодных светильников. Просто я люблю цифры. На мой взгляд нужно еще снижать стоимость светодиодного светильника, чтобы его можно было применять повсеместно. У светодиодного светильника много достоинств по сравнению с люминесцентным светильником, но и есть один большой недостаток – цена.

При использовании светодиодов в качестве основного источника света возникает вопрос — какая мощность светильников для этого необходима. Чтобы на него ответить, нужно знать от чего зависит КПД светодиодов.

КПД светодиодного элемента

В идеальном светодиоде с КПД 100% каждый поступивший электрон излучает фотон света. Такая эффективность недостижима. В реальных устройствах она оценивается по соотношению светового потока к подведённой (потребляемой) мощности.

На этот показатель влияет несколько факторов:

  • Эффективность излучения . Это количество фотонов, излучаемых на p-n переходе. Падение напряжения на нём составляет 1,5-3В. При дальнейшем повышении напряжения питания, оно не растёт, а увеличивается ток через прибор и яркость света. В отличие от лампы накаливания, она имеет линейную зависимость от протекающего тока только до определённой величины. При дальнейшем повышении тока дополнительная электрическая мощность расходуется только на нагрев, что ведёт к падению КПД.
  • Оптический выход . Все выделенные фотоны должны излучаться в окружающее пространство. Именно это является главным сдерживающим фактором для увеличения КПД светодиодов.
  • Некоторые светодиоды для лучшей передачи цвета покрываются слоем люминофора. В этом случае на КПД устройства дополнительно влияет эффективность преобразования света .

В начале XXI века нормой считался КПД 4%, а сейчас поставлен рекорд в 60%, что в 10 раз больше, чем у лампы накаливания.

«Средний по больнице» КПД для топовых производителей типа Philips или Cree колеблется 35-45%. Точные параметры можно увидеть в даташите конкретной модели. КПД для бюджетных китайских светодиодов — это всегда рулетка с разбросом 10-45%.

Но это теоретические показатели, на которые мы повлиять не можем. На практике ключевую роль играют ток, подаваемый на диод и температурный режим. Прекрасную работу проделал пользователь ютуба под ником berimor76, показав на практике зависимость светового потока от подаваемого тока и температуры. Смотрим видео.

КПД источника питания

Кроме КПД самих светодиодов, на энергоэффективность светодиодных ламп и светильников оказывает влияние источник питания. Они есть двух типов:

  • Блок питания. Подаёт на светодиоды постоянное, заранее заданное напряжение, независимо от потребляемого тока.
  • Драйвер. Обеспечивает постоянное значение тока. Напряжение при этом значения не имеет.

Блок питания

Блок питания подаёт на светодиод напряжение, превышающее необходимое для открытия p-n перехода. Но сопротивление открытого диода очень мало. Поэтому для ограничения тока последовательно с источником света устанавливается резистор. Мощность, выделяющаяся на нём, полностью превращается в тепло, что понижает КПД светодиодного светильника. Например, в led-ленте потери составляют около 25%.

Более совершенным и экономичным устройством является электронный драйвер.

Драйвер

Драйвер для питания светодиодов обеспечивает их током постоянной величины. Диоды подключаются к устройству последовательно в количестве, которое зависит от рабочего напряжения светодиодов и максимального напряжения устройства.


В светодиодных лампах вместо драйвера используется токоограничивающий конденсатор. При прохождении через него электрического тока выделяется так называемая реактивная мощность. Она не превращается в тепло, но электросчётчик её всё равно учитывает. КПД такого «драйвера» зависит от количества диодов, включённых последовательно с ним.


Электронный драйвер устанавливается в светильниках большой мощности или в переносных устройствах, где экономия электроэнергии или ёмкости батарей важнее цены за устройство.

КПД светильника

При организации освещения, в том числе светодиодного, имеет значение КПД форм-фактора светильника. Это соотношение всего света, выходящего из светильника к световому потоку, излучаемому самой лампой.

Любая конструкция светильника, даже сделанная из зеркал или прозрачного стекла, поглощает свет. Идеальный вариант без потерь — это патрон с лампочкой, подвешенный на проводах.

Но это редкий случай, когда идеальный не значит лучший. Световой поток от лампочки на проводе направлен во все стороны, а не только в нужную. Конечно, свет, попавший на потолок или стены отражается от них, но далеко не весь, особенно под открытым небом или в комнате с тёмными обоями.


Этим же недостатком обладает светодиодная лампа с разносторонним расположением элементов («кукуруза») или с матовым рассеиванием. В последнем случае рассеиватель дополнительно поглощает свет.

В отличие от таких светильников, led-лампа с односторонним расположением диодов направляет свет в одну сторону. КПД светильника с такой лампой близка к 100%. Освещённость, создаваемая ею выше, чем у другой, с таким же световым потоком, но направленным в разные стороны.


Это связано с конструктивными особенностями светодиодов — в отличие от ламп накаливания и люминесцентных (энергосберегающих), имеющих круговую направленность излучения, они излучают свет в диапазоне 90-120 градусов. Теми же свойствами обладают светодиодные ленты и прожектора, излучающие свет только в одном направлении.

Таким образом, максимальный световой поток на ватт мощности излучают светодиоды в прожекторах со встроенным электронным драйвером.

Насколько на самом деле эффективны светодиоды и как продлить их срок службы?

Каким образом измерить в домашних условиях их КПД и повысить эффективность, а также увеличить долговечность светодиодных светильников?

Чтобы ответить на все эти вопросы, достаточно провести несколько наглядных экспериментов, причем без использования каких-то сложных лабораторных приборов.
Светодиод – это один из самых эффективных и простых в использовании источников света. Однако при этом, большую часть потребляемой энергии он все равно расходует впустую, преобразуя ее не в свет, а в тепло.

Сравнивать светодиоды с обычной лампочкой конечно же не нужно, тут они убежали далеко вперед. Но как вы думаете, насколько высок у них реальный КПД?

Как измерить КПД светодиода

Давайте это проверим в живую, не по надписям на упаковках и данным таблиц в интернете, а колориметрическим методом в домашних условиях.

Если опустить светодиод в воду и замерить разницу температур до его включения и спустя некоторое время после, то можно выяснить, сколько энергии от него перейдет именно в тепло.

Зная общее количество затраченной энергии и энергии ушедшей в тепло, можно реально узнать сколько пользы от данного источника света перешло именно в свет.

Емкость в которой будут производиться измерения, должна быть изолирована от колебаний температуры снаружи и внутри. Для этого подойдет обычная колба от термоса.

При определенной доработке, у вас получится вполне годный самодельный колориметр.

Чтобы изолировать и предотвратить утечки тока, все провода и выводы на светодиоде следует покрыть толстым слоем электроизоляционного лака.

Перед экспериментом заливаете во внутрь колбы 250мл дистиллированной воды.

Опускаете светодиод в воду, так чтобы она полностью его покрывала. При этом свет должен беспрепятственно выходить наружу.

Включаете питание и начинаете отсчет времени.

Через 10 минут выключаете напряжение и опять замеряете температуру воды.

При этом не забудьте хорошенько ее перемешать.

Теперь нужно повторить эксперимент, но на этот раз, плотно заклейте матрицу каким-нибудь непрозрачным материалом. Это необходимо, дабы энергия не могла покинуть систему в виде света.

Опыт с заклеенным экземпляром повторяется опять в той же последовательности:

  • 250мл дистиллированной воды
  • замер начальной температуры
  • 10 минут ”свечения”
  • замер конечной температуры

1 of 4





После всех измерений и экспериментов, можно переходить к расчетам.

Расчет эффективности

Допустим, для данной модели среднее потребление источника света равняется 47,8Вт. Время работы – 10минут.

Если подставить эти данные в формулу, то получим, что за время в 600 секунд, на свечение светодиода было затрачено 28 320 Дж.

В случае с заклеенной моделью, вода нагрелась с 27 до 50 градусов. Теплоемкость воды 4200Дж, а масса – 0,25кг.

Еще 130 Дж на каждый градус, ушло на нагрев колбы, плюс нужно прибавить энергию на нагрев самого светодиода. Он весит 27 грамм и в основном состоит из меди. В итоге получается цифра в 27377 Дж.

Отношение выделившейся энергии и затраченной будет равняться 96,7%. То есть, не хватает более 3%. Это как раз таки и есть тепловые потери.

В случае с открытым светодиодом, вода нагрелась с 28 до 45 градусов. Все остальные переменные остались прежними. Расчет здесь будет выглядеть следующим образом:

Какой же итог можно сделать из всех этих опытов и вычислений?

Как видно из этого небольшого эксперимента, непосредственно в виде света, систему покинуло около 28% энергии. А если учесть 3% тепловых потерь, то и вовсе остается всего 25%.

Как видите, до идеальных источников света, как их представляют многие продавцы, светодиодам еще очень далеко.

Хуже того, на рынке зачастую встречаются модели, крайне низкого качества с еще меньшим КПД.

Яркость и мощность

Давайте теперь сравним яркость разных моделей и посмотрим от чего она зависит и можем ли мы как то на это влиять. Чтобы провести достоверное сравнение, воспользуйтесь обычным куском трубы и люксометром.

Допустим, испытанный ранее качественный образец, обеспечивает освещенность 1100 люкс. И это при потребляемой мощности в 50 Вт.

А если взять более дешевую модель? Данные могут получиться в два раза ниже – менее 5500 Лк.

И это при одинаковой мощности! Получается, что заплатите вы за свет столько же как и в первом случае, а получите его на 50% меньше.

А можно ли получить в 3 раза больше света, затрачивая как можно меньше энергии?

Можно, но для этого понадобится светодиод работающий в немного другом режиме. Чтобы понять как это сделать, нужно провести еще немного измерений.

В первую очередь, вас должен интересовать момент зависимости яркости от потребляемой мощности. Постепенно повышайте мощность и следите за показаниями люксометра.

В итоге вы выйдите на такую вот нелинейную зависимость.

Если бы она была линейной, вы бы получили что-то вроде этого.

Получится еще интересней, если посчитать относительную эффективность светодиода, за 100% взяв значение мощности в 50Вт.

Видите, как прослеживается ухудшение его эффективности. Такое ухудшение с повышением мощности, присуще всем светодиодам. И причин этому несколько.

Почему ухудшается эффективность светодиодов

Одна из них, конечно же нагрев. С повышением температуры, снижается вероятность образования фотонов в p-n переходе.

К тому же уменьшается и энергия этих фотонов. Даже при хорошем охлаждении корпуса, температура p-n перехода может быть на десятки градусов выше, так как он отделен от металла подложкой из сапфира.

А она не очень хорошо проводит тепло. Разницу температур можно посчитать, зная размеры кристалла и выделяемую на нем теплоту.

При выделяющейся теплоте в 1Вт, учитывая толщину и площадь подложки, температура перехода будет на 11,5 градусов выше.

В случае с дешевым светодиодом все намного хуже. Здесь результат – более 25 градусов.

Высокая температура перехода приводит к быстрой деградации кристалла, сокращая его срок службы. Отсюда и возникают моргания, мигания и т.п.

Интересно, производители не знают про эту разницу в температуре или намеренно создают обреченные устройства?

Нередко компоненты, казалось бы в нормальных, дорогих светильниках, работают в предельных режимах, на максимальных температурах без какого-либо запаса прочности.

Пока ток небольшой, оно не заметно. Но из-за квадратичной зависимости, с увеличением тока все большая часть энергии превращается в бесполезное тепло.

Как увеличить эффективность

То есть, подключить параллельно еще один светодиод, тем самым в два раза уменьшив потери на сопротивление. И этот метод, конечно работает.

Подключив в светильник параллельно два светодиода вместо одного, вы получите больше света с меньшими затратами энергии и соответственно меньше нагрева.

Безусловно, это продлевает и срок службы светодиода.

Можно не останавливаться и подключить 3,4 диода вместо одного, хуже не будет.

А если места для нескольких светодиодов недостаточно, то можно поставить светодиод изначально рассчитанный на большую мощность. Например 100 ваттный, в 50 ваттный светильник.

Именно таким образом можно поднять эффективность светильника в несколько раз, при тех же затратах энергии, что и на первоначальном источнике, но меньшей мощности, и работающего на пределе своих возможностей.

Более того, используя не больше трети мощности от максимальной, вы навсегда забудете, что такое замена сгоревших светодиодов.

При этом эффективность их работы и КПД заметно возрастут.

Поэтому при покупке светодиодов, всегда интересуйтесь размером кристаллов. Ведь от этого зависит их охлаждение и внутреннее сопротивление.

Здесь действует правило – чем больше, тем лучше.

В продолжение темы:
Компьютер

Использование обыкновенных батареек невыгодно, так как их ресурс работы очень сильно ограничен. Поэтому практичнее воспользоваться аккумуляторами. Их достоинство в...

Новые статьи
/
Популярные