Как мультиметром измерить силу тока, напряжение и сопротивление. Как пользоваться токовыми измерительными клещами

Измерение постоянного тока и напряжения чаще всего производится щитовыми приборами магнитоэлектрической, а при измерении высоких напряжений - электростатической и ионной систем. Иногда применяют приборы электромагнитной, электродинамической и ферродинамической систем, они значительно уступают приборам магнитоэлектрической системы в отношении точности, чувствительности, потребляемой мощности, имеют неравномерную шкалу, чувствительны к воздействию внешних магнитных полей. Для проведения точных измерений все большее применение находят цифровые вольтметры, амперметры и комбинированные приборы, обладающие большим быстродействием и малой погрешностью измерения (0,01-0,1 %).

Простейшим способом измерения и напряжения является непосредственное включение приборов в цепь, возможное при выполнении условий:

1) максимальный предел измерения амперметра (вольтметра) не меньше максимального тока (напряжения) в цепи;

2) номинальное напряжение амперметра не менее номинального напряжения сети;

3) сопротивление амперметра Rа намного меньше, а сопротивление вольтметра намного больше сопротивления измеряемой цепи Rн, значительное сопротивление амперметра снижает ток в цепи при его включении на величину

4) соблюдение полярности включения приборов.

Для расширения пределов измерения приборов используют преобразователи в виде , добавочных сопротивлений, делителей напряжения, измерительных трансформаторов и измерительных усилителей. Шунт представляет собой сопротивление, включаемое параллельно измеритель-ному прибору в цепь измеряемого тока. Шунты на токи до 50-100 А обычно устанавливают внутри прибора. Для больших токов применяют наружные шунты, имеющие токовые зажимы для включения в цепь измеряемого тока и потенциальные зажимы для подключения измерительного прибора. С целью унификации измерительных приборов шунты изготовляют по ГОСТ 8042-78 шунтов 0,05-0,5.

Подключив к шунту милливольтметр с пределом измерения, соответствующим номинальному падению напряжения на шунте, получим соответствие полной шкалы прибора номинальному току шунта. Измеренный ток

где Iн, Uн - номинальные ток шунта и падение напряжения на шунте; U -показание милливольтметра.

Для расширения пределов измерения вольтметров последовательно с измерительным прибором включают добавочное сопротивление Rд.

Измеренное напряжение

где Р = Rд /Rв+1 - коэффициент расширения предела измерения прибора; Uв - показание вольтметра;

Rв - входное сопротивление вольтметра.

Добавочные сопротивления могут быть как внутренние (помещенные в корпус прибора), так и наружные для измерения напряжений свыше 500 В.

Номинальные токи добавочных сопротивлений стандартизированы ГОСТ 8623-78 при номинальном падении напряжения на них. Основная погрешность добавочных сопротивлений ± (0,1-0,5)%. Для расширения пределов измерения приборов с высоким входным сопротивлением используют делители напряжения с фиксированным коэффициентом деления, обычно кратным 10. В установках высокого напряжения электропередач постоянного тока и в сильноточных цепях могут быть использованы кроме указанных преобразователей измерительные трансформаторы постоянного тока.

В ходе эксплуатации электросети или какого-либо прибора приходится выполнять измерение силы тока.

Из данной статьи вы узнаете, что понимается под этим термином и какие инструменты используются для этой цели.

Заодно поговорим о мерах безопасности при проведении подобных работ.

Единица измерения силы тока

Силой тока в физике принято называть величину заряда, пересекающего поперечное сечение проводника за единицу времени. Единица измерения - ампер (А). Силу в 1 А имеет такой ток, при котором за 1-у секунду через сечение проводника проходит заряд в 1 кулон (Кл).

Силу тока можно сравнить с напором воды. Как известно, в старину небольшие речки перегораживали плотинами, чтобы создать напор, способный вращать колесо мельницы.

Чем более сильным был напор, тем более производительную мельницу можно было привести с его помощью в движение.

Точно так же и сила тока характеризует работу, которую может выполнить электричество. Простой пример: лампочка при увеличении силы тока в цепи будет гореть ярче.

Зачем нужно знать, какой силы ток протекает в проводнике? От силы тока зависит то, как он будет действовать на человека при случайном контакте с токоведущими частями. Производимый электричеством эффект отобразим в таблице:

Сила тока, А (переменный с частотой 50 Гц) Эффект
Менее 0,5 мА является незаметным для человека
От 0,5 до 2 мА Появляется нечувствительность к различным раздражителям
От 2 до 10 мА Болевые ощущения, спазм мышц
От 10 мА до 20 мА Усиленные спазмы, некоторые ткани повреждаются. При силе тока от 16 мА человек теряет способность разжать или отдернуть руку, чтобы разомкнуть контакт с токоведущей частью
От 20 мА до 100 мА Дыхательный паралич
От 100 мА до 3 А Фибрилляция сердца, нужны безотлагательные меры по реанимированию пострадавшего
Свыше 3 А Сильные ожоги, остановка сердца (при кратковременном воздействии возможность реанимирования сохраняется)

А вот еще несколько причин:

  1. Сила тока характеризует нагрузку на проводник. Максимальная пропускная способность последнего зависит от материала и площади поперечного сечения. Если сила тока окажется слишком большой, провод или кабель будет сильно греться. Это может привести к расплавлению изоляции с последующим коротким замыканием. Вот почему проводку всегда защищают от перегрузок автоматическими выключателями или предохранителями. С особым вниманием к протекающей в проводах силе тока следует отнестись владельцам квартир и домов со старой проводкой: ввиду применения все большего количества электроприборов она часто оказывается в перегруженном состоянии.
  2. По соотношению значений силы тока в различных цепях электроприбора можно сделать вывод о его исправности. Например, в фазах электродвигателя должны протекать токи равной силы. Если наблюдаются расхождения, значит двигатель неисправен либо работает с перегрузкой. Таким же способом определяется состояние нагревательного прибора или электрического «теплого пола»: замеряется сила тока во всех составляющих устройства.

Работа электричества, точнее говоря его мощность (количество работы за единицу времени), зависит не только от силы тока, но и от напряжения. Собственно говоря, произведение этих величин и определяет мощность:

W = U * I,

  • W – мощность, Вт;
  • U – напряжение, В;
  • I – сила тока, А.

Таким образом, зная напряжение в сети и мощность прибора, можно рассчитать, какая сила тока будет через него протекать при условии исправного состояния: I = W/U. К примеру, если известно, что мощность обогревателя составляет 1,1 кВт и работает он от обычной сети напряжением 220 В, то сила тока в нем составит: I = 1100 / 220 = 5 А.

Формула измерения силы тока

При этом нужно учитывать, что согласно законам Кирхгофа сила тока в проводе до разветвления представляет собой сумму токов в ветвях. Поскольку в квартире или доме все приборы подключаются по параллельной схеме, то если, допустим, одновременно работают два прибора с током в 5 А, то в подводящем проводе и в общем нулевом будет протекать ток силой в 10 А.

Обратная операция, то есть расчёт мощности потребителя путем перемножения измеренной силы тока на напряжение, не всегда дает правильный результат. Если в устройстве-потребителе имеются обмотки, как например в электродвигателях, которым присуще индуктивное сопротивление, часть мощности будет расходоваться на преодоление этого сопротивления (реактивная мощность).

Чтобы определить активную мощность (полезная работа электричества), нужно знать фактический коэффициент мощности для данного прибора, представляющий собой соотношение активной и реактивной мощностей.

Приборы для измерения силы тока и напряжения

Вот какие измерительные инструменты помогут электрику в данном вопросе:

Амперметр

Существует несколько разновидностей данного прибора, которые различаются принципом действия:

  1. Электромагнитный: внутри имеется катушка, протекаю по которой ток создает электромагнитное поле. Это поле втягивает в катушку железный сердечник, связанный со стрелкой. Чем большей будет сила тока, тем сильнее будет втягиваться сердечник и тем более будет отклоняться стрелка.
  2. Тепловой: в приборе установлена натянутая металлическая нить, связанная со стрелкой. Протекающий ток вызывает нагрев нити, степень которого зависит от силы тока. А чем сильнее нагреется нить, тем сильнее она удлинится и провиснет, соответственно, тем сильнее отклонится стрелка.
  3. Магнитоэлектрический: в приборе имеется постоянный магнит, в поле которого находится связанная со стрелкой алюминиевая рамка с намотанной на нее проволокой. При протекании через проволоку электрического тока рамка в магнитном поле стремится повернуться на некоторый угол, который зависит от силы протекающего тока. А от угла поворота зависит положение стрелки, отмечающей на шкале значение силы тока.
  4. Электродинамический: внутри прибора имеются две последовательно соединенные катушки, одна из которых является подвижной. При протекании по катушкам тока в результате взаимодействия возникающих при этом электромагнитных полей подвижная катушка стремится повернуться относительно неподвижной и при этом тянет за собой стрелку. Угол поворота будет зависеть от силы протекающего тока.
  5. Индукционный: ток пропускается через обмотки неподвижных катушек, соединенных магнитной системой. В результате образуется вращающееся или бегущее электромагнитное поле, воздействующее с некоторой силой (зависит от силы тока) на подвижный металлический цилиндр или диск. Тот связан со стрелкой.
  6. Электронный: такие приборы еще называют цифровыми. Внутри имеется электрическая схема, информация выводится на жидкокристаллический дисплей.

Мультиметр для измерения силы тока

Так принято называть универсальный электронный измеритель параметров тока. Он может переключаться как в режим амперметра, так и в режим вольтметра, омметра и мегомметра (измеряются сопротивления большой величины, обычно изоляции).

Измерение силы тока мультиметром

Результаты измерений отображаются на жидко-кристаллическом дисплее. Для работы прибору необходимо питание от батареек.

Тестер

По функциональности это тот же мультиметр, но аналоговый. Результаты измерений обозначаются на шкале при помощи стрелки, батарейки требуются только при наличии омметра.

Измерительные клещи

Измерительные клещи более практичны. Ими нужно просто зажать участок тестируемого провода, после чего прибор покажет силу протекающего в нем тока.

При этом нужно учитывать, что в клещах должен оказаться только проверяемый проводник. Если зажать несколько проводников, прибор покажет геометрическую сумму токов в них.

Измерительные клещи

Таким образом, при помещении в токоизмерительные клещи 1-фазного провода целиком прибор покажет «нуль», так как в фазном и нулевом проводниках протекают разнонаправленные токи одинаковой величины.

Методы измерения

Первые три прибора для проведения измерений должны быть включены в цепь нагрузки последовательно с ней, то есть в разрыв провода. Для 1-фазной сети это может быть как фазный, так и нулевой провод. Для 3-фазной - только фазный, так как в нулевом протекает геометрическая сумма токов во всех фазах (при одинаковой нагрузке равна нулю).

Отметим два важных обстоятельства:

  1. В отличие от вольтметра (измеритель напряжения), амперметр нельзя использовать без нагрузки, иначе получится короткое замыкание.
  2. Щупами прибора можно касаться проводов или контактов только при отсутствии напряжения, то есть тестируемая линия должна быть обесточена. В противном случае между близко расположенными щупом и проводом может возникнуть дуга с выделением тепла, достаточного для расплавления металла.

Все измерительные приборы имеют переключатель диапазона, которым регулируется чувствительность.

Заземление необходимо для безопасной эксплуатации электричества. – наиболее важный компонент электрической сети.

Трансформатор 220 на 12 Вольт – назначение и рекомендации по изготовлению вы найдете .

Заметим, что ток, потребляемый некоторыми приборами, такими как телевизионная и компьютерная техника, энергосберегающие и светодиодные лампы, не является синусоидальным.

Поэтому некоторые измерительные приборы, принцип действия которых ориентирован на переменное напряжение, могут определять значение силы такого тока с ошибкой.

Видео на тему

Приборы для измерения переменного тока могут быть различными.

Для измерения тока промышленной частоты (50 – 100 Гц) используют в основном приборы непосредственной оценки на основе электромагнитной и электродинамической систем, а также термоэлектрической систем.

В маломощных цепях высоких частот ток измеряется выпрямительными, термоэлектрическими, электронными цифровыми и аналоговыми вольтметрами на резисторе с известным сопротивлением. Амперметр должен иметь минимальные значения входного сопротивления, индуктивностей и емкостей.

Приборы электромагнитной системы. Принцип действия этих приборов основан на явлении втягивания стальной пластины, соединенной со стрелкой, магнитным полем катушки. Отклонение подвижной части измерительного механизма зависит от квадрата измеряемого тока и может быть использовано для измерения как постоянного, так и переменного тока с частотой не выше 5 кГц. Подбором формы сердечника удается получить практически равномерную шкалу. Амперметры магнитоэлектрической системы выпускаются в качестве щитовых приборов классов точности 0,5, 1,0, 2,5 на частотах до 1500 Гц, и 0,5, 1,0 – до 2400 Гц. Для расширения пределов измерения тока электромагнитным амперметром применяются не шунты, а секционные катушки или трансформаторы. Достоинства – простота конструкции, дешевизна и надежность. Недостатки – малая точность и чувствительность. Электромагнитные амперметры применяют для непосредственного измерения токов до 200 А, катушка измерительного механизма включается последовательно в цепь измеряемого тока. Предел измерения определяется числом витков катушки. Чем выше предел, тем меньше витков из более толстого провода.

Электродинамические приборы. Принцип действия основан на взаимодействии двух магнитных потоков, создаваемых токами, протекающими по двум катушкам, одна из которых подвижна. В результате взаимодействия магнитных полей катушек и противодействующих пружин, подвижная катушка поворачивается на некоторый угол, пропорциональный токам в катушках. Измеряется этими приборами действующее (среднеквадратическое) значение тока. Схемы включения обмоток катушек различны. При последовательном включении измеряются малые токи (менее 0,5 А), шкала прибора квадратична. При параллельном включении обмоток измеряются большие токи, шкала тоже квадратичная. Электродинамические амперметры выпускаются различных классов точности до 0,1. Применяются в основном на промышленных частотах. Для расширения пределов применяют переключение катушек измерительного механизма с последовательного на параллельное и трансформаторы тока.

Выпрямительные приборы.

Они широко применяются для измерения тока в звуковом диапазоне частот. Принцип действия основан на выпрямительных свойствах диода. Постоянная составляющая выпрямленного диодом тока измеряется прибором магнитоэлектрической системы. Обычно используются выпрямители однополупериодные и двухполупериодные. Выпрямительные приборы измеряют среднее значение переменного тока, а не среднеквадратическое. Шкалу прибора градуируют в среднеквадратических значениях, поэтому показания пересчитывают через коэффициент формы. Выпрямительные приборы для измерения токов широко применяют как составные элементы комбинированных приборов:тестеров, авометров, используемых для измерения токов, напряжений, сопротивлений. При использовании соответствующих диодов выпрямительные приборы могут применяться в диапазоне СВЧ. Германиевые и кремниевые диоды обеспечивают частотный диапазон до 100 МГц. Основные достоинства выпрямительных приборов – высокая чувствительность, малое собственное потребление и возможность измерения в широком диапазоне частот. Недостаток – невысокая точность. Основные источники погрешностей – изменение параметров диодов со временем. Класс точности выпрямительных приборов 1,5 и 2,5, пределы измерений по току от 2 мА до 600 А, по напряжению от 0,3 до 600 В.

Термоэлектрические приборы.

Они используются для измерения токов высокой частоты. Прибор состоит из термопреобразователя, термоэлемента и измерительного прибора.

Измерительный прибор И выполнен по магнитоэлектрической системе. Простейший термопреобразователь имеет подогреватель 2 и термопару 1 из двух разнородных проводников, спаянных между собой. Если через подогреватель термоэлемента пропускать измеряемый ток, то вследствие нагрева спая в цепи термопары и прибора И будет протекать термоток постоянного напряжения. Прибор измеряет действующее значение переменного тока. Шкала термоэлектрических приборов близка к квадратичной. Чувствительность зависит от материала термопары. Достоинства термоэлектрических приборов – высокая чувствительность, большой диапазон измерения токов, широкий диапазон частот, возможность измерения токов произвольной формы. Недостатки – неравномерность шкалы, которая в начальной части получается сжатой. Кроме того показания зависят от температуры. Общий частотный диапазон термоэлектрических приборов лежит в пределах от 45 Гц до 300 МГц, номинальные токи – от 1 мА до 50 А, классы точности – от 1,0 до 2,5.

Измерение напряжения

Измерение постоянного напряжения

При использовании метода непосредственной оценки вольтметр подключается параллельно тому участку цепи, на котором надо измерить напряжение. Относительная погрешность измерения напряжения равна
, т.е. чем больше внутреннее сопротивление вольтметра, тем меньше погрешность измерения.

Измерение постоянного напряжения может быть выполнено любыми измерителями напряжений постоянного тока (магнитоэлектрическими, электродинамическими, электромагнитными, электростатическими, аналоговыми и цифровыми вольтметрами.) Выбор вольтметра обусловлен мощностью объекта измерений и необходимой точностью. Диапазон измеряемых напряжений лежит в пределах от долей микровольт до десятков киловольт.

Если необходимая точность может быть обеспечена приборами электромеханической группы, то следует предпочесть этот простой метод непосредственной оценки. При измерении напряжений с более высокой точностью следует использовать приборы, основанные на методе сравнения. При любом методе измерения могут быть использованы аналоговый и цифровой отсчеты.

Приборы непосредственной оценки.

Магнитоэлектрические приборы используются при проверке режимов радиосхем и используются при измерении напряжений в приборах других систем. Кроме того они используются в качестве индикаторов. Вольтметры магнитоэлектрической системы имеют равномерную шкалу, высокую точность, большую чувствительность, но низкое входное сопротивление.

Электростатические вольтметры имеют достоинство малое потребление, независимость от температуры окружающей среды, высокое входное сопротивление, а недостатки – неравномерная шкала и опасность пробоя между пластинами.

Наиболее широко для измерения постоянного напряжения применяют электронные вольтметры. Они могут быть аналоговыми и цифровыми.

Аналоговые электронные вольтметры постоянного тока.

В отличие от вольтметров электромеханической группы электронные вольтметры постоянного тока имеют высокое входное сопротивление и малое потребление тока от измерительной цепи. На рисунке М2-6 представлена структурная схема аналогового электронного вольтметра.

Рисунок М2-6. Структурная схема аналогового электронного вольтметра постоянного напряжения.

Основными элементами являются входное устройство, усилитель постоянного тока и измерительный прибор магнитоэлектрической системы. Входное устройство содержит входные зажимы, делитель напряжения, предварительный усилитель. Высокоомный делитель на резисторах служит для расширения пределов измерения. Усилитель постоянного тока служит для повышения чувствительности вольтметра и является усилителем мощности измеряемого напряжения до значения, необходимого для создания достаточного вращающего момента у измерительного прибора.

К усилителям постоянного напряжения предъявляются такие требования, как высокая линейность характеристики, постоянство коэффициента усиления. Основные технические характеристики вольтметров постоянного тока приведены в таблице М2-3.

Таблица М2-3. Основные технические характеристики вольтметров постоянного тока.

Тип, наименование прибора

Диапазон измеряемых напряжений, В

Основная погрешность измерения, %

В2–34, вольтметр постоянного тока, дифференциальный, цифровой

0,01 мВ – 1000В,

поддиапазоны:

В2 – 36, вольтметр постоянного тока, цифровой

В2-38, нановольтметр цифровой постоянного тока

Измерение постоянного напряжения цифровыми приборами.

Цифровые вольтметры все шире применяются для измерения напряжений и токов. Упрощенная структурная схема цифрового вольтметра представлена на рис.М2-7.

Рисунок М2-7. Структурная схема цифрового вольтметра

Входное устройство содержит делитель напряжения. Аналого-цифровой преобразователь (АЦП) преобразует аналоговый сигнал в цифровую форму и представляет его цифровым кодом. Цифровое отсчетное устройство регистрирует измеряемую величину.

По типу АЦП цифровые вольтметры делятся на кодоимпульсные и времяимпульсные. Поскольку АЦП преобразует сигнал постоянного тока в цифровой код, цифровые вольтметры считают приборами постоянного напряжения. Для измерения переменного напряжения на выходе вольтметра ставится преобразователь.

По виду измеряемой величины цифровые приборы делятся на приборы:

    для измерения постоянного напряжения;

    для измерения переменного напряжения;

    мультиметры (универсальные вольтметры для измерения напряжения, сопротивления, тока)

Цифровые вольтметры обычно имеют высокое входное сопротивление более 100 Мом, диапазоны измерений 100мВ, 1 В, 10В, 100 В, 1000В. Порог чувствительности на диапазоне 1 00 мВ может быть 10 мкВ.

Запомните одно правило при измерениях: при измерении силы тока, соединяются последовательно с нагрузкой, а при измерении других величин — параллельно.

На рисунке ниже показано, как надо правильно соединять щупы и нагрузку для того, чтобы замерить силу тока:

Черный щуп, который воткнут в гнездо СОМ — его не трогаем, а красный переносим в гнездо, где написано mA или хA, где вместо х — максимальное значение силы тока, которую может замерить прибор. В моем случае это 20 Ампер, так как рядом с гнездом написано 20 А. В зависимости от того, какое значение силы тока вы собираетесь замерять, туда и втыкаем красный щуп. Если вы не знаете, какая примерно сила тока будет протекать в цепи, то ставим в гнездо хА:


Давайте проверим, как все это работает в деле. В нашем случае нагрузкой является вентилятор от компьютера. Наш блок питания имеет встроенную индикацию для показа силы тока, а как вы знаете с курса физики, сила тока измеряется в Амперах. Выставляем 12 Вольт, на мультиметре ручку крутим на измерение постоянного тока. Мы выставили предел измерения на мультике до 20 Ампер. Собираем как по схеме выше и смотрим показания на мультике. Оно в точности совпало со встроенным амперметром на .


Для того, чтобы измерить силу тока переменного напряжения мы ставим крутилку мультиметра на значок измерения силы тока переменного напряжения — «А~» и точно также по такой же схеме делаем замеры.

Как измерить постоянное напряжение мультиметром

Возьмем вот такую вот батарейку


Как мы видим, на ней написан ток 550 мАh , который она может выдавать в нагрузку в течение часа, то есть миллиампер в час, а также напряжение, которым обладает наша батарейка — 1,2 Вольта. Напряжение — это понятно, а вот что такое «ток в течение часа»? Допустим, наша нагрузка -лампочка кушает ток 550 мА. Значит лампочка будет светить один час. Или возьмем лампочку, которая светит послабее, и пусть она у нас кушает 55 мА, значит она сможет проработать 10 часов.

Значение 550 мА, которое у нас написано на батарейке, делим на значение, которое написано на нагрузке и получаем время, в течение которого все это будет работать, пока не сядет батарейка. Короче говоря, кто дружен с математикой, тому не составит труда понять сие чудо:-)

Давайте замеряем напряжение на батарейке, один щуп мультиметра ставим на плюс, а другой на минус, то есть подсоединяем параллельно , и вуаля!


В данном случае напряжение на батарейке 1,28 Вольт. Значение на новой батарейке всегда должно превышать то, которое написано на этикетке.

Давайте замеряем напряжение на блоке питания. Выставляем 10 Вольт и замеряем.


Красный — это плюс, черный — минус. Все сходится, напряжение 10,09 Вольт. 0,09 Вольт спишем на погрешность.

Если же мы спутаем щупы мультиметра или щупы блока, то ничего страшного не произойдет. Мультиметр покажет нам такое же значение, но со знаком «минус».


Имейте ввиду, на таких мультиметрах это не прокатывает


Для того, чтобы точно определить полярность не имея мультиметра, можно прибегнуть к нескольким советам, которые описаны в статье.

Как измерить переменное напряжение мультиметром

Ставим на мультике предел измерения переменного напряжения и замеряем напряжение в розетке. Без разницы, как совать щупы. У нет плюса и минуса. Там есть фаза и ноль. Грубо говоря, один провод в розетке не представляет опасности — это ноль, а другой может здорово попортить ваше самочувствие или даже здоровье — это фаза.

По идее в розетке должно быть 220 Вольт. Но у меня показывает 215. Ничего страшного в этом нет. Напряжение в розетке «играет». Ровно 220 Вольт вам вряд ли придется увидеть при измерениях напряжения в розетках вашего дома:-)

Содержание:

Практически каждому человеку хотя бы раз в жизни приходилось решать вопрос, как измерить напряжение в розетке, на определенных проводах или узнать силу тока в цепи. Конечно, для определения каждого параметра электричества требуется определенный прибор. Для измерения напряжения (к примеру, чтобы проверить розетку) можно использовать вольтметр. Прибор, измеряющий силу постоянного тока (как, собственно, и переменного), называется амперметром, а сопротивления - омметром. А что же такое мультиметр?

Если дословно, то приставка «мульти» обозначает «много». Значит, подобным прибором можно померить много величин - и это действительно так. При помощи этого устройства (его еще называют тестером) можно измерить не только напряжение, силу и сопротивление. Также в него могут входить функции поиска короткого замыкания, измерение емкости конденсатора, коэффициента усиления транзисторов и даже температуры воздуха или поверхности.

Но каким же образом производится измерение силы тока? Ведь не может быть, чтобы устройство само понимало, какая величина подлежит проверке. Конечно, необходимо повернуть ручку в нужное положение и правильно подключить щупы. А как это сделать - сейчас попробуем понять.

Как измерить напряжение?

Перед тем, как проверить напряжение в розетке мультиметром, необходимо правильно подключить щупы к устройству. Черный провод подключается в черное гнездо, помеченное как «СОМ», а красный - в гнездо с пометкой «V Ω mA».

Далее, чтобы измерить напряжение в сети, требуется выставить необходимое значение на регуляторе. Если измеряется прямая величина, то нужно найти диапазон DCV, а измерение переменной - выставив на ACV, а после выбрать необходимое значение напряжения с расчетом, чтобы оно было выше измеряемого. Если измеряемая величина неизвестна, то необходимо выставить максимальное значение.

Для измерения величины тока, т.е. напряжения в сети, необходимо подключить щупы параллельно источнику, т.е. при измерениях в розетке один из них подключается на фазный контакт, а другой - на нулевой.

При измерениях прямой величины красный щуп должен подключаться на плюс, а черный - на минус. Конечно, если мультиметр цифровой, т.е. с электронным дисплеем, возможно и обратное подключение, на экране высветится то же значение, только со знаком минус в начале. А вот с аналоговым прибором (стрелка со шкалой) подобное измерение постоянного тока не пройдет. При неправильном подключении он просто ничего не покажет.

Сопротивление

При измерении сопротивления, равно как и при прозвонке цепи на целостность или короткое замыкание, щупы подключаются так же, как и в предыдущем случае. Переключатель на лицевой панели мультиметра должен быть выставлен на необходимые показатели диапазона, который отмечает значок сопротивления - омега (Ω).

Если необходимо проверить работоспособность лампы или наличие разрыва в цепи, можно воспользоваться функцией прозвона. В том же диапазоне сопротивления имеется значок в виде точки и уходящих от нее вправо черточек. Это обозначение звукового сигнала. При переключателе, включенном в этом положении, если между щупами происходит короткое замыкание, раздается звуковой сигнал. Это очень удобно, не нужно постоянно смотреть на дисплей.

У подобных устройств измеряться будет диапазон сопротивлений от 0 до 200 МОм.

Сила тока

Эта величина измеряется в амперах, а обозначается как в схемах, так и на мультиметре как «А». При подключении щупов необходима внимательность, т.к. при силе до 10 А оно остается прежним. А вот при силе от 10 до 20 А красный провод уже переключается в гнездо с пометкой 10 А. У более мощных мультиметров, с большим диапазоном измерений, есть еще один разъем - для силы более 20 А. Отмечено оно соответствующим значком.

Переключатель на лицевой панели устанавливается на нужную величину, с учетом того, какой ток замеряется. Т.е в диапазоне «DCA» измеряется постоянный ток, «ACA» - переменный.

Также необходимо рассмотреть, как проверить амперметр на исправность. Для этого может пригодиться устройство бесперебойного питания с функцией показаний силы тока. Включив амперметр последовательно, с ним можно сравнить показания обоих приборов.

Основной нюанс состоит в самих измерениях. Для того чтобы замерить ток в розетке, мультиметр включается в цепь именно последовательно, а не параллельно, как при других измерениях. Если же подключение произведено неправильно, устройство просто сгорит. Вернее сгорит плавкий предохранитель, но и это тоже неприятно.

Но отдельный диапазон для измерения силы переменного тока есть только у дорогостоящих мультиметров. В более простых устройствах есть только возможность замера силы постоянного тока. Как замерить силу тока в таком случае? И из этой ситуации можно найти выход.

Чтобы измерить ток переменной сети, необходимо вспомнить некоторые знания, полученные на уроках физики в школе, а именно будет необходима формула вычисления силы по напряжению и сопротивлению. Выглядит она так: I = U:R (т.е. напряжение необходимо разделить на сопротивление).

Для упрощения вычислений понадобится кусок провода или нихромовой спирали. При помощи того же измерительного прибора нужно отрезать от него такую часть, сопротивление которой будет равным 1 Ом. Далее необходимо подключить один конец полученного сопротивления к одному из контактов сети. Второй конец сопротивления идет через последовательно присоединенную лампу на второй контакт сети. Выставив регулятор мультиметра в диапазон переменного напряжения, можно замерить его, прикоснувшись к двум сторонам сопротивления. Это и будет сила переменного тока. Как видно, измерение мультиметром не столь сложно, и, выполняя его, много знаний не требуется.

Итоги по переключателю

Теперь имеет смысл повторить, какие обозначения присутствуют на переключателе режимов мультиметра:

  1. Диапазон сопротивлений, отмеченный значком «омега» от 0 до 200 МОм.
  2. Диапазон постоянной величины от 0 до 1000 В. Так же отмечается как DCV.
  3. Диапазон переменной величины от 0 до 750 В. Может быть маркирован как АCV.
  4. Коэффициент усиления транзисторов.
  5. Диапазон емкости конденсаторов от 0 до 200 Ф.
  6. Сила постоянного тока от 0 до 20 А. Иногда отмечается как DCA.
  7. Сила переменного тока от 0 до 20 А. Обозначается как АСА.
  8. Прозвонка - звуковой сигнал короткого замыкания.

Исходя из представленной информации, можно понять, что даже недорогое устройство при грамотном подходе может принести много пользы. Возможности подобных приборов весьма обширны, места они много не занимают, а стоимость не настолько высока, чтобы можно было на этом сэкономить. Скорее в экономии поможет сам мультиметр, ведь при наличии проверенного измеряющего устройства не придется вызывать профессиональных электромонтеров по поводу и без повода. Научившись правильно пользоваться этим устройством, любую проблему в электрике, возникшую в квартире (к примеру, состояние напряжения в проверяемой сети), можно оперативно решить. Так же оно окажется незаменимым помощником не только в сети 220 вольт, но и в слаботочных схемах, т.е. в радиоэлектронике.

В продолжение темы:
Интернет

Во время пользования компьютером в системе создаётся множество временных файлов. Одна часть удаляется после закрытия программ и перезагрузки ПК, а другая — так и остаётся...

Новые статьи
/
Популярные