Простой контроллер заряда литиевых батарей. Li-ion и Li-polymer аккумуляторы в наших конструкциях Схема контроля 3 литиевых батарей

В состав портативных устройств в обязательном порядке входит аккумулятор, обычно для этих целей используется литиево-ионная батарея. Несмотря на то, что функциональные особенности современной электроники постоянно совершенствуются, сам аккумулятор практически остается неизменным.

Емкость и функциональные особенности АКБ значительно выросли, но общий принцип работы остался тем же. Аккумулятор может значительно перегреваться при зарядке и выходить из строя. При переразряде напряжение может опуститься ниже критического уровня, что приведет к деградации элемента, и новая дозарядка станет невозможной. Потому для управления над процессом зарядки батареи используются электронные схемы, получившие название контроллеров.

Это оборудование используется в схемах мобильных телефонов, ноутбуков и другого переносного электронного оборудования. Контроллер аккумулятора необходим для солнечных и ветряных батарей. Его включают в состав источников бесперебойного питания и другой техники.

Алгоритм процесса заряда аккумулятора

Для того чтобы понять, как происходит заряд батареи, рассмотрим схему, в состав которой входят только резистор и сам аккумулятор.

В нашем случае используется аккумулятор 18650, емкость которого составляет 2400 мА/ч, с пороговыми значениями напряжения 2,8-4,3 В, и блок питания на 5 вольт и максимальный ток в 1 А. Рассчитаем параметры необходимого резистора. При этом будем считать, что аккумулятор находится в нормальном состоянии, а не полностью разряжен. Проведем зарядку батареи. Сначала, когда напряжение на АКБ минимально, ток будет максимален, а Ur – падение напряжение на резисторе, должно составить 2,2 Вольта (это разница между Uип – напряжением блока питания 5 В и начальными показателями батареи).

Исходя из этих данных, рассчитываем R – начальное сопротивление на резисторе и Pr – мощность рассеивания:

R= Ur/I = 2.2/1 = 2.2 Ом, где I – это максимальный ток блока питания.

Pr=I2R =1х1х2.2 = 2.2 Вт.

Когда напряжение в аккумуляторе дойдет до 4,2 В, Iзар – ток заряда, составит:

Iзар=(Uи -4.2)/R=(5-4.2)/2.2 = 0.3 А.

Получается, что для зарядки нам понадобится резистор, который работает при данных показателях. Но в этой схеме все время придется проверять напряжение на аккумуляторе, чтобы не пропустить момент, когда оно достигнет максимального значения в 4,2 В.

Важно! Теоретически зарядить аккумулятор без отдельной схемы защиты возможно, но проследить при этом за напряжением и зарядным током не получится. Да, 1-2 раза такой вариант может быть использован, но гарантировать, что батарея при этом не выйдет из строя, нельзя.

Основные функции контроллеров

Существуют три главные задачи, которые выполняют контроллеры заряда:

  • оптимизация системы питания;
  • сохранение ресурсов;
  • избежание фатальных поломок.

Контроллеры обладают разными функциями. Они корректирует подачу тока, следя за тем, чтобы показатели были меньше максимального заряда, но при этом превышали ток саморазряда. Устройства следят за прохождением всех этапов разряда-заряда аккумулятора, исходя из строения и химического состава АКБ.

Если речь идет о батареи для ноутбука, то контроллер дополнительно компенсирует энергетические потоки, которые возникают при одновременной зарядке и работе ПК. Иногда устройства оборудуются термодатчиками для аварийного отключения при перегреве или на холоде.

Если в системе используются сразу несколько аккумуляторов, контроллер обеспечивает заряд только для тех банок, которые еще не зарядились.

Для исключения утечек газа и взрыва в некоторых моделях контроллеров заряда аккумулятора используются датчики давления.

Обратите внимание! Работа любого контроллера должна обеспечивать правильное соотношение постоянный ток/постоянное напряжение (CC/CV). Если при заряде количество поставляемой энергии избыточно, то эта лишняя часть выделяется на контроллере в виде тепла. Поэтому сам контроллер никогда не встраивается в батарею, он включается в общую схему, но всегда располагается отдельно. Но как сделать устройство своими руками?

Простые схемы

Одним из самых распространенных контроллеров является вариант на микросхеме на DW01. Его используют в большинстве мобильных устройств. По виду этот элемент представляет собой электронную плату, на которую монтируются все необходимые компоненты.

DW01 имеет 6 выходов, а полевые транзисторы смонтированы в одном корпусе с 8 выходами – это микросхема 8205А.

В данной схеме задача контроллера заряда отключить АКБ либо при полном разряде, либо при полной зарядке, то есть достижении значения в 4,25 В. Вместо DW01 можно использовать NE57600, G2J, G3J, S8261, S8210, K091, JW01, JW11 и другие аналогичные микросхемы.

В микросхему LC05111CMT уже входят полевые транзисторы, здесь дополнительно используются только конденсатор и резисторы. В схеме используются встроенные транзисторы с переходным сопротивлением в 0,011 Ом. Это простая схема для создания аккумулятора своими руками. Между выводами S1 и S2 максимальное сопротивление составляет 24 В, а максимальные ток заряда/разряда – 10А.

Все сделанные самостоятельно устройства должны отвечать заданным параметрам, иначе обеспечить правильную работу аккумулятора не получится.

Видео

Как же плотно вошли в нашу жизнь Li-ion аккумуляторы. То, что они применяются почти во все микропроцессорной электронике это уже норма. Так и радиолюбители уже давно взяли их себе на вооружение и используют в своих самоделках. Способствую этому значительные плюсы Li-ion аккумуляторов, такие как небольшой размер, большая емкость, большой выбор исполнений различных ёмкостей и форм.

Самый распространенный аккумулятор имеет марку 18650 его напряжение составляет 3,7 В. Для которого я у буду делать индикатор разряда.
Наверное, не стоит рассказывать, как вредна для аккумуляторов кране низкая их разрядка. Причем для аккумуляторов всех разновидностей. Правильная эксплуатация аккумуляторных батарей продлит их жизнь в несколько раз и сэкономит ваши деньги.

Схема индикатора зарядки


Схема довольно универсально и может работать в диапазоне 3-15 вольт. Порог срабатывания можно настроить переменным резистором. Так что устройство можно использовать почти для любых аккумуляторов, будь то кислотные, никелево-кадмиевые (nicd) или литий-ионные (Li-ion).
Схема отслеживает напряжение и как только оно упадет ниже заданного уровня – загорится светодиод, сигнализируя о низкой разрядке батареи.
В схеме используется регулируемый (ссылка где брал). Вообще этот стабилитрон является очень интересным радиоэлементом, который может существенно облегчить жизнь радиолюбителям, при построении схем, завязанных на стабилизации или пороговом срабатывании. Так что берите его на вооружение, особенно при постройке блоков питания, схем стабилизации токов и т.п.
Транзистор можно заменить любым другим NPN структуры, отечественный аналог КТ315, КТ3102.
R2- регулирует яркость светодиода.
R1 – переменный резистор номиналом от 50 до 150 кОм.
Номинал R3 можно прибавить до 20-30 кОм для экономии энергии, если использован транзистор с высоким коэффициентом передачи.
Если у вас не окажется регулируемого стабилизатора TL431, то можно использовать проверенную советскую схему на двух транзисторах.


Порог срабатывания задается резисторами R2, R3. Вместо них можно запаять один переменный, чтобы дать возможность регулировки и уменьшить количество элементов. Советские транзисторы можно заменить на BC237, BC238, BC317 (КТ3102) и BC556, BC557 (КТ3107).


Схему можно собрать на плате или навесным монтажом. Одеть термоусадочную трубку и обдуть термофеном. Приклеить на двухсторонний скотч к тыльной стороне корпуса. Я лично установил данную плату в шуруповерт и теперь не до вожу его аккумуляторы до критического разряда.
Так же параллельно резистору со светодиодом можно подключить зуммер (пищалку) и тогда вы точно будете знать о критических порогах.

Для начала нужно определиться с терминологией.

Как таковых контроллеров разряда-заряда не существует . Это нонсенс. Нет никакого смысла управлять разрядом. Ток разряда зависит от нагрузки - сколько ей надо, столько она и возьмет. Единственное, что нужно делать при разряде - это следить за напряжением на аккумуляторе, чтобы не допустить его переразряда. Для этого применяют .

При этом, отдельно контроллеры заряда не только существуют, но и совершенно необходимы для осуществления процесса зарядки li-ion аккумуляторов. Именно они задают нужный ток, определяют момент окончания заряда, следят за температурой и т.п. Контроллер заряда является неотъемлемой частью любого .

Исходя из своего опыта могу сказать, что под контроллером заряда/разряда на самом деле понимают схему защиты аккумулятора от слишком глубокого разряда и, наоборот, перезаряда.

Другими словами, когда говорят о контроллере заряда/разряда, речь идет о встроенной почти во все литий-ионные аккумуляторы защите (PCB- или PCM-модулях). Вот она:

И вот тоже они:

Очевидно, что платы защиты представлены в различных форм-факторах и собраны с применением различных электронных компонентов. В этой статье мы как раз и рассмотрим варианты схем защиты Li-ion аккумуляторов (или, если хотите, контроллеров разряда/заряда).

Контроллеры заряда-разряда

Раз уж это название так хорошо укрепилось в обществе, мы тоже будем его использовать. Начнем, пожалуй, с наиболее распространенного варианта на микросхеме DW01 (Plus).

DW01-Plus

Такая защитная плата для аккумуляторов li-ion встречается в каждом втором аккумуляторе от мобильника. Чтобы до нее добраться, достаточно просто оторвать самоклейку с надписями, которой обклеен аккумулятор.

Сама микросхема DW01 - шестиногая, а два полевых транзистора конструктивно выполнены в одном корпусе в виде 8-ногой сборки.

Вывод 1 и 3 - это управление ключами защиты от разряда (FET1) и перезаряда (FET2) соответственно. Пороговые напряжения: 2.4 и 4.25 Вольта. Вывод 2 - датчик, измеряющий падение напряжения на полевых транзисторах, благодаря чему реализована защита от перегрузки по току. Переходное сопротивление транзисторов выступает в роли измерительного шунта, поэтому порог срабатывания имеет очень большой разброс от изделия к изделию.

Вся схема выглядит примерно вот так:

Правая микросхема с маркировкой 8205А - это и есть полевые транзисторы, выполняющие в схеме роль ключей.

S-8241 Series

Фирма SEIKO разработала специализированные микросхемы для защиты литий-ионных и литий-полимерных аккумуляторов от переразряда/перезаряда. Для защиты одной банки применяются интегральные схемы серии S-8241 .

Ключи защиты от переразряда и перезаряда срабатывают соответственно при 2.3В и 4.35В. Защита по току включается при падении напряжения на FET1-FET2 равном 200 мВ.

AAT8660 Series

LV51140T

Аналогичная схема протекции литиевых однобаночных аккумуляторов с защитой от переразряда, перезаряда, превышения токов заряда и разряда. Реализована с применением микросхемы LV51140T .

Пороговые напряжения: 2.5 и 4.25 Вольта. Вторая ножка микросхемы - вход детектора перегрузки по току (предельные значения: 0.2В при разряде и -0.7В при зарядке). Вывод 4 не задействован.

R5421N Series

Схемотехническое решение аналогично предыдущим. В рабочем режиме микросхема потребляет около 3 мкА, в режиме блокировки - порядка 0.3 мкА (буква С в обозначении) и 1 мкА (буква F в обозначении).

Серия R5421N содержит несколько модификаций, отличающихся величиной напряжения срабатывания при перезарядке. Подробности приведены в таблице:

SA57608

Очередной вариант контроллера заряда/разряда, только уже на микросхеме SA57608 .

Напряжения, при которых микросхема отключает банку от внешних цепей, зависят от буквенного индекса. Подробности см. в таблице:

SA57608 потребляет достаточно большой ток в спящем режиме - порядка 300 мкА, что отличает ее от вышеперечисленных аналогов в худшую сторону (там потребляемые токи порядка долей микроампера).

LC05111CMT

Ну и напоследок предлагаем интересное решение от одного из мировых лидеров по производству электронных компонентов On Semiconductor - контроллер заряда-разряда на микросхеме LC05111CMT .

Решение интересно тем, что ключевые MOSFET"ы встроены в саму микросхему, поэтому из навесных элементов остались только пару резисторов да один конденсатор.

Переходное сопротивление встроенных транзисторов составляет ~11 миллиом (0.011 Ом). Максимальный ток заряда/разряда - 10А. Максимальное напряжение между выводами S1 и S2 - 24 Вольта (это важно при объединении аккумуляторов в батареи).

Микросхема выпускается в корпусе WDFN6 2.6x4.0, 0.65P, Dual Flag.

Схема, как и ожидалось, обеспечивает защиту от перезаряда/разряда, от превышения тока в нагрузке и от чрезмерного зарядного тока.

Контроллеры заряда и схемы защиты - в чем разница?

Важно понимать, что модуль защиты и контроллеры заряда - это не одно и то же. Да, их функции в некоторой степени пересекаются, но называть встроенный в аккумулятор модуль защиты контроллером заряда было бы ошибкой. Сейчас поясню в чем разница.

Важнейшая роль любого контроллера заряда заключается в реализации правильного профиля заряда (как правило, это CC/CV - постоянный ток/постоянное напряжение). То есть контроллер заряда должен уметь ограничивать ток зарядки на заданном уровне, тем самым контролируя количество "заливаемой" в батарею энергии в единицу времени. Избыток энергии выделяется в виде тепла, поэтому любой контроллер заряда в процессе работы достаточно сильно разогревается.

По этой причине контроллеры заряда никогда не встраивают в аккумулятор (в отличие от плат защиты). Контроллеры просто являются частью правильного зарядного устройства и не более.

Кроме того, ни одна плата защиты (или модуль защиты, называйте как хотите) не способен ограничивать ток заряда. Плата всего лишь контролирует напряжение на самой банке и в случае выхода его за заранее установленные пределы, размыкает выходные ключи, отключая тем самым банку от внешнего мира. Кстати, защита от КЗ тоже работает по такому же принципу - при коротком замыкании напряжение на банке резко просаживается и срабатывает схема защиты от глубокого разряда.

Путаница между схемами защиты литиевых аккумуляторов и контроллеров заряда возникла из-за схожести порога срабатывания (~4.2В). Только в случае с модулем защиты происходит полное отключение банки от внешних клемм, а в случае с контроллером заряда происходит переключение в режим стабилизации напряжения и постепенного снижения зарядного тока.


Речь пойдет про очень удобную плату с контроллером заряда на основе TP4056. На плате дополнительно установлена защита для аккумуляторов li-ion 3.7V.

Подходят для переделок игрушек и бытовой техники с батареек на аккумуляторы.
Это дешевый и эффективный молуль (зарядный ток до 1А).

Хоть про модули на чипе TP4056 написано уже много, добавлю немного от себя.
Совсем недавно узнал про , которые стоят чуть дороже, по размерам чуть больше, но дополнительно имеют в своем составе BMS модуль () для контроля и защиты аккумулятора от переразряда и перезаряда на основе S-8205A и DW01, которые отключают батарею при превышении напряжения на ней.


Платы предназначены для работы с элементами 18650 (в основном из-за зарядного тока 1А), но при некоторой переделке (перепайка резистора - уменьшение зарядного тока) подойдут для любые аккумуляторов на 3.7В.
Разводка платы удобная - присутствуют контактные площадки под пайку на вход, на выход и для аккумулятора. Штатно питать модули можно от Micro USB. Статус зарядки отображается встроенным светодиодом.
Размеры примерно 27 на 17 мм, толщина небольшая, самое «толстое» место - это MicroUSB коннектор


Specifications:
Type: Charger module
Input Voltage: 5V Recommended
Charge Cut-off Voltage: 4.2V (±)1%
Maximum Charging Current: 1000mA
Battery Over-discharge Protection Voltage: 2.5V
Battery Over-current Protection Current: 3A
Board Size: Approx. 27 * 17mm
Status LED: Red: Charging; Green: Complete Charging
Package Weight: 9g

По ссылке в заголовке продается лот из пяти штук, то есть цена одной платы около $0.6. Это чуть дороже, чем одна плата зарядки на TP4056, но без защиты - эти продаются пачками за полтора доллара. Но для нормальной работы нужно покупать отдельно BMS.

Коротко о подстройке зарядного тока для TP4056

Модуль контроллера заряда TP4056 + защита для аккумуляторов
Производит защиту от перезарядки, переразрядки, тройная защита от перегрузки и короткого замыкания.
Максимальный зарядный ток: 1 А
Максимальный постоянный ток разряда: 1 А (пик 1.5А)
Ограничение напряжения зарядки: 4.275 В ±0. 025 В
Ограничение (отсечка) разрядки: 2.75 В ±0. 1 В
Защита аккумулятора, чип: DW01.
B+ соединяется с положительным контактом аккумулятора
B- соединяется с отрицательным контактом аккумулятора
P- подключается к отрицательному контакту точки подключения нагрузки и зарядки.

На плате присутствует R3 (маркировка 122 - 1.2кОм), для выбора нужного тока зарядки элемента выбираем резистор согласно таблице и перепаиваем.


На всякий случай типовое включение TP4056 из спецификации.



Лот модулей TP4056+BMS берется уже не первый раз, уж оказался очень удобен для беспроблемных переделок бытовой техники и игрушек на аккумуляторы.

Размеры модулей небольшие, По ширине как раз меньше двух АА батареек, плоские - замечательно подходят с установкой старых аккумуляторов от сотовых телефонов.


Для зарядки используется стандартный источник на 5В от USB, вход - MicroUSB. Если платы используются каскадом - можно припаять к первой в параллель, на фото видно контакты минуса и плюса по сторонам от MicroUSB разъема.


С обратной стороны ничего нет - это может помочь при креплении на клей или скотч.


Используются разъемы MicroUSB для питания. У старых плат на TP4056 встречался MiniUSB.
Можно спаять платы вместе по входу и только одну подключать к USB - таким образом можно заряжать 18650 каскадами, например, для шуруповертов.


Выходы - крайние контактные площадки для подключения нагрузки (OUT +/–), в середине BAT +/– для подключения ячейки аккумулятора.


Плата небольшая и удобная. В отличие от просто модулей на TP4056 - здесь присутствует защита ячейки аккумуляторов.
Для соединения каскадом нужно соединить выходы под нагрузку (OUT +/–) последовательно, а входы по питанию параллельно.


Модуль идеально подходит для установки в различные бытовые приборы и игрушки, которые предусматривают питание от 2-3-4-5 элементов АА или ААА. Это во-первых, приносит некоторую экономию, особенно при частой замене батареек (в игрушках), а, во-вторых, удобство и универсальность. Использовать для питания можно элементы, взятые из старых аккумуляторов от ноутбуков, сотовых телефонов, одноразовых электронных сигарет и так далее. В случае, если есть три элемента, четыре, шесть и так далее, нужно использовать StepUp модуль для повышения напряжения от 3.7V до 4.5V/6.0V и т.д. В зависимости от нагрузки, конечно. Также удобен вариант на двух ячейках аккумуляторов (2S, две платы последовательно, 7.4V) со StepDown платой. Как правило, StepDown имеют регулировку, и можно подстроить любое напряжение в пределах напряжения питания. Это лишний объем для размещения вместо батареек АА/ААА, но тогда можно не переживать за электронику игрушки.


Конкретно, одна из плат была предназначена для старого икеевского миксера. Уж очень часто приходилось заменять батарейки в нем, а на аккумуляторах он работал плохо (в NiMH 1.2В вместо 1.5В). Моторчику все равно, будет ли его питать 3В или 3.7В, так что я обошелся без StepDown. Даже слегка бодрее крутить стал.


Аккумулятор 08570 от электронной сигареты практически идеальный вариант для любых переделок (емкость около 280мАч, а цена - бесплатно).


Но в данном случае несколько длинноват. Длина АА батарейки 50 мм, а этого аккумулятора 57 мм, не влез. Можно, конечно, сделать «надстройку», например, из пластика полиморфа, но…
В итоге взял мелкий модельный аккумулятор с такой же емкостью. Очень желательно снизить ток зарядки (до 250...300 мА) увеличением резистора R3 на плате. Можно штатный нагреть, отогнуть один конец, и припаять любой имеющийся на 2-3 кОм.

Слева привел картинку по старому модулю. На новом модуле размещение компонентов другое, но все те же самые элементы присутствуют.


Подключаем аккумулятор (Припаиваем) в клеммам в середине BAT +/–, отпаиваем контакты моторчика от пластин-контактор для АА батареек (их вообще убираем), припаиваем нагрузку-моторчик к выходу платы (OUT +/–).
В крышке дремелем можно прорезать отверстие под USB.


Я сделал новую крышку - старую совсем выкинул. В новой продуманы пазы для размещения платы и отверстие под MicroUSB.


Гифка работы миксера от аккумулятора - крутит бодро. Емкости 280мАч хватает на несколько минут работы, заряжать приходится в 3-6 дней, смотря как часто использовать (я пользуюсь редко, можно и за один раз посадить, если увлечься.). Из-за снижения тока зарядки заряжает долго, чуть меньше часа. Зато любой зарядкой от смартфона.


Если использовать StepDown контроллер для р/у машинок, то лучше взять два 18650 и две платы и соединить их последовательно (а входы для заряжания - параллельно), как на картинке. Где общий OUT ставится любой понижающий модуль и регулируется до нужного напряжения (например, 4.5V/6.0V) В этом случае машинка не будет медленно ездить, когда «сядут» батарейки. В случае разряда модуль просто резко отключится.

Модуль на TP4056 со встроенной защитой BMS – очень практичный и универсальный.
Модуль рассчитан на зарядный ток 1А.
Если соединяете каскадом - учитывайте суммарный ток при зарядке, например, 4 каскада для питания аккумуляторов шуруповерта «попросят» 4А на зарядку, а это з/у от сотового телефона не выдержит.
Модуль удобен для переделки игрушек - машинок на радиоуправлении, роботов, различных светильников, пультов… - всех возможных игрушек и техники, где приходится часто менять батарейки.

Update: если минус сквозной, то с запаралелливанием сложнее все.
См комментарии.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

Планирую купить +57 Добавить в избранное Обзор понравился +29 +62
В продолжение темы:
Компьютер

Использование обыкновенных батареек невыгодно, так как их ресурс работы очень сильно ограничен. Поэтому практичнее воспользоваться аккумуляторами. Их достоинство в...

Новые статьи
/
Популярные