Дисплейные устройства и проекторы. Классификация и принцип действия дисплейных устройств. Технология элт. Технология жкд. Технология осид (элд). ПлАзменные мониторы. Отсутствие мерцаний, и смазывания движущихся объектов, возникающих при цифровой обработке

Фил Коннор
Ноябрь 2002г

Что лучше: плазменная панель или LCD телевизор?

Это зависит от многих факторов. Тема обсуждения двух технологий, которые обрабатывают и отображают входной видео- или компьютерный сигнал совершенно по-разному, сложна и изобилует многочисленными деталями. Обе технологии быстро прогрессируют, а их себестоимость и розничные цены снижаются одновременно. В ближайшем будущем между этими технологиями неизбежно столкновение в линейке 40-дюймовых (по диагонали) мониторов/телевизоров.

Ниже перечисляются некоторые преимущества каждой технологии; также даётся объяснение связи между этими преимуществами и покупателями той и другой технологии в различных областях применения:

1) ВЫЖИГАНИЕ ЭКРАНА

Для LCD можно не учитывать факторы, приводящие к выжиганию экрана при отображении статической картинки. В технологии LCD (жидкокристаллический дисплей) применяется по сути флуоресцентная тыловая лампа, свет от которой идёт через пиксельную матрицу, содержащую жидкокристаллические молекулы и поляризованный субстрат для придания формы яркости и цвету. Жидкий кристалл, находящийся в LCD, в действительности применяется в твёрдом состоянии.

У плазменной технологии, напротив, следует учитывать факторы, приводящие к выжиганию экрана при отображении статической картинки. Статические изображения начнут «выжигать» отображаемую картинку уже через короткий промежуток времени - в некоторых случаях, спустя приблизительно 15 минут. Хотя «выжигание» можно обычно «снять», выводя на весь экран серое или сменяющие друг друга одноцветные поля, оно тем не менее является существенным фактором, препятствующим развитию плазменной технологии.

Преимущество: LCD

Для таких областей применения, как отображение в аэропортах информации о полётах, статические картинки-витрины в розничных магазинах или постоянные информационные показатели, LCD–монитор будет наилучшим вариантом.

2) КОНТРАСТНОСТЬ

Плазменная технология добилась значительных успехов в разработке изображений повышенной контрастности. Panasonic утверждает, что их плазменные дисплеи имеют контрастность 3000:1. Плазменная технология просто блокирует подачу электропитания (посредством сложных внутренних алгоритмов) на определенные пикселы для того, чтобы сформировать тёмные или чёрные пикселы. Эта методика действительно даёт тёмные чёрные цвета, хотя иногда и в ущерб проработке полутонов.

В LCD технологии, напротив, нужно увеличивать подачу энергии, чтобы сделать пикселы более тёмными. Чем больше напряжение, подаваемое на пиксел, тем темнее LCD-пиксел. Несмотря на достигнутые улучшения LCD технологии в плане контрастности и уровня чёрного, даже лучшие производители LCD технологии, например Sharp, могут обеспечить контрастность лишь между 500:1 и 700:1.

Для просмотра DVD фильмов, где обычно много очень светлых и очень темных сюжетов и в компьютерных играх с характерным для них обилием темных сцен, плазменная панель имеет явное преимущество.

3) ДОЛГОВЕЧНОСТЬ

Производители LCD утверждают, что долговечность их мониторов/телевизоров составляет от 50.000 до 75.000 часов. LCD-монитор может работать столь же долго, сколько работает тыловая лампа (которую в действительности можно заменять), так как свет от неё, подвергаясь воздействию жидкокристаллической призмы, обеспечивает яркость и цвет. Призма является субстратом, и поэтому на самом деле ничего не выжигает.

С другой стороны, в плазменной технологии на каждый пиксел подаётся электрический импульс, который возбуждает инертные газы - аргон, неон и ксенон (люминофоры), необходимые для обеспечения цвета и яркости. Когда электроны возбуждают люминофор, атомы кислорода рассеиваются. Изготовители плазмы оценивают долговечность люминофоров и, следовательно, самих панелей в 25.000 – 30.000 часов. Люминофоры не могут быть заменены. Не существует такого явления, как закачка новых газов в плазменный дисплей.

Преимущество: LCD, в два и более раза.

В промышленных/коммерческих областях применения (например, в витринах информационных табло, где дисплеи должны работать круглосуточно), где как правило не слишком высокие требования к качеству изображения, LCD будет наилучшим вариантом для длительного использования.

4) НАСЫЩЕННОСТЬ ЦВЕТА

Цвет более точно воспроизводится в плазменных панелях, поскольку вся информация, необходимая для воспроизведения любого оттенка в спектре, содержится в каждой ячейке. Каждый пиксел содержит синий, зелёный и красный элементы для точной передачи цвета. Насыщенность, достигаемая благодаря конструкции пиксела плазменной панели, обеспечивает, на мой взгляд, самые живые цвета среди дисплеев всех типов. Координаты цвета в цветовом пространстве в хороших плазменных панелях намного более точны, чем в LCD.

В LCD по физическим условиям прохождения волн сквозь длинные тонкие жидкокристаллические молекулы сложнее добиться эталонной точности и живости цветопередачи. Цветовая информация имеет преимущество вследствие меньшего размера пиксела в большинстве LCD–телевизоров. Однако при одинаковом размере пиксела цвет будет не таким выразительным, как у плазменных панелей.

Плазменная технология превосходит LCD при показе видео, особенно, в динамичных сценах. LCD предпочтительна для отображения статических компьютерных изображений, не только из-за выжигания, но и потому, что она также обеспечивает прекрасные однородные цвета.

5) ВЫСОТА НАД УРОВНЕМ МОРЯ

Как было упомянуто выше, в LCD применяется технология задней подсветки в комбинации с жидкокристаллическими молекулами. В принципе, нет ничего, что служило бы препятствием для размещения этого монитора на высокогорье, как и нет никаких реальных ограничений. Этим объясняется использование LCD экранов в качестве главного обзорного экрана для отображения видеоинформации о полётах.

Поскольку ячейка плазменного экрана в плазменных панелях в действительности является стеклянной оболочкой, наполненной инертным газом, то разреженный воздух приводит к росту давления газа внутри этой оболочки и увеличивает мощность, требуемую для нормального охлаждения плазменной панели, в результате чего появляется характерное гудение (жужжание) и слишком заметный шум от вентилятора. Эти проблемы возникают на высоте приблизительно 2.000 метров.

Преимущество: LCD

На высоте Денвера и выше для любых областей применения я бы использовал LCD мониторы.

6) УГОЛ ОБЗОРА

Производители плазменных мониторов всегда утверждали, что их изделия имеют угол обзора 160° - по сути, это так и есть. LCD добилась значительных успехов в увеличении угла обзора. В LCD-мониторах нового поколения фирм Sharp и NEC материал ЖК-основы значительно улучшен; расширен и динамический диапазон. Но несмотря на эти успехи, при просмотре монитора/телевизора под большими углами заметное отличие между двумя технологиями всё ещё сохраняется.

Преимущество: плазменная панель

Каждая ячейка плазменной панели представляет собой самомстоятельный источник света, что позволяет добиться превосходной яркости каждого пиксела. Отсутствие устройства задней подсветки (как в LCD) тоже хорошо с точки зрения угла обзора.

7) ИСПОЛЬЗОВАНИЕ С КОМПЬЮТЕРОМ

LCD эффективно отображает статические компьютерные изображения, без мерцаний и выжигания экрана.

Плазменной панели труднее обрабатывать статические изображения от компьютера. Хотя их отображение выглядит удовлетворительным, проблемой является выжигание экрана; представляет трудность и эффект ступенчатости, встречающийся в панелях с меньшей разрешающей способностью при отображении статичного текста (Power Point). Видеоизображения с компьютера получаются качественными, но возможно некоторое мерцание, зависящее как от заводского качества панели, так и от отображаемого разрешения. Плазменная панель, конечно же, по-прежнему выигрывает по углу обзора.

Преимущество: LCD, за исключением больших углов обзора.

8) ВОСПРОИЗВЕДЕНИЕ ВИДЕО

Здесь первенство за плазменными панелями, благодаря прекрасному качеству при отображении сцен с быстрым движением, высокому уровню яркости, контраста и цветовой насыщенности.

На LCD могут быть заметны цветовые шлейфы во время показа видеосцен с быстрым движением, так как эта технология медленнее отрабатывает изменения цвета. Причиной этого являются световые призмы, которые должно быть появляются вследствие воздействия напряжения, управляющего отклонением светового луча. Чем более высокое напряжение подаётся на кристалл, тем темнее становится изображение в этой части LCD панели. По этой же причине у LCD более низкие уровни контрастности.

Преимущество: плазменная панель, с большим запасом.

DVD или любое потоковое видео, TV или HDTV – от любого из этих видеоисточников плазменная панель покажет неразмытое, с высокой контрастностью (в зависимости от плазмы), насыщенное цветами изображение. Несмотря на значительные успехи в этом направлении, LCD по-прежнему испытывает некоторые трудности при сравнительно больших размерах экрана, хотя при меньших размерах смотрится превосходно.

9) ОБЪЕМЫ ПРОИЗВОДСТВА И СТОИМОСТЬ

Хотя обе технологии испытывают трудности при создании мониторов большого размера, большую плазменную панель все же оказалось сделать легче, производители уже выпустили плазменные панели с диагональю более 60 дюймов. Хотя такие мониторы всё ещё стоят дорого, они продемонстрировали свою эффективность и надёжность. ЖК-основу большого размера для LCD телевизора трудно изготовить без дефектных пикселов. На данный момент самый большой LCD экран - это 40–дюймовая коммерческая версия фирмы NEC. До этого Sharp наращивал свою линейку LCD-мониторов от 20 до 22 и затем до 30 дюймов, а сейчас начинает поставлять на рынок новую 37–дюймовую широкоэкранную панель.

Преимущество: плазменная панель.

Несмотря на то, что себестоимость и цены на изделия обеих технологий снижаются (за исключением цен на большие плазменные панели), плазменная панель по-прежнему имеет более низкую себестоимость производства и поэтому имеет преимущество в цене. 50–дюймовые плазменные панели чрезвычайно популярны и быстро отвоевывают долю рынка у ранее доминировавших 42–дюймовых панелей. Такая тенденция для плазменных панелей, имеющих более высокий процент выхода годных изделий в производстве и, как следствие, более низкую себестоимость, будет, вероятно, сохраняться в течение по меньшей мере 2-х лет.

10) ТРЕБОВАНИЯ ПО НАПРЯЖЕНИЮ

Поскольку в LCD для получения света используется флуоресцентная лампа задней подсветки, у этой технологии гораздо меньшие требования по напряжению, чем у плазменных панелей. С другой стороны, при использовании плазменной панели необходимым (трудновыполнимым) условием является подача питания на сотни тысяч прозрачных электродов, которые возбуждают свечение ячеек люминофора.

Плазменный экран
Плазменная панель немного похожа на обыкновенный кинескоп - она так-же покрыта способным светиться составом. В то же время они, как и LCD, используют сетку электродов с защитным покрытием из оксида магния для передачи сигнала на каждый пиксель-ячейку. Ячейки заполнены интертными` газами - смесью неона, ксенона, аргона. Проходящий через газ электрический ток заставляет его светиться.

По сути, плазменная панель представляет собой матрицу из крошечных флуоресцентных ламп, управляемых при помощи встроенного компьютера панели. Каждый пиксель-ячейка является своеобразным конденсатором с электродами. Электрический разряд ионизирует газы, превращая их в плазму - т. е. электрически нейтральную, высоко-ионизированную субстанцию, состоящую из электронов, ионов и нейтральных частиц.


В нормальных условиях отдельные атомы газа содержат равное число протонов (частиц с положительным зарядом в ядре атома) и электронов и таким образом газ электрически нейтрален. Но если ввести в газ большое число свободных электронов, пропустив через него электрический ток, ситуация меняется радикально: свободные электроны сталкиваются с атомами, «выбивая» все новые и новые электроны. Без электрона меняется баланс, атом приобретает положительный заряд и превращается в ион. Когда электрический ток проходит через образовавшуюся плазму, отрицательно и положительно заряженные частицы стремятся друг к другу. Среди всего этого хаоса частицы постоянно сталкиваются.


Столкновения «возбуждают» атомы газа в плазме, заставляя их высвобождать энергию в виде фотонов.

В плазменных панелях используются в основном инертные газы - неон и ксенон. В состоянии «возбуждения» они испускают свет в ультрафиолетовом диапазоне, невидимом для человеческого глаза. Тем не менее, ультрафиолет можно использовать и для высвобождения фотонов видимого спектра.
После разряда ультрафиолетовое излучение заставляет светиться фосфорное покрытие ячеек-пикселей. Красную, зеленую или синюю составляющую покрытия. На самом деле каждый пиксель делится на три субпикселя, содержащих красный, зеленый либо синий фосфор. Для создания разнообразных оттенков цветов интенсивность свечения каждого субпикселя контролируется независимо. В кинескопных телевизорах это делается за счет маски (да и прожекторы под каждый цвет разные), а в «плазме» - при помощи 8-битной импульсной кодовой модуляции. Общее число цветовых комбинаций в этом случае достигает 16,777,216 оттенков.

Тот факт, что плазменные панели сами являются источником света, обеспечивает отличные углы обзора по вертикали и горизонтали и великолепную цветопередачу (в отличие от, например, LCD, экраны в которых нуждаются в подсветке). Впрочем, обычные плазменные дисплеи в норме страдают от низкой контрастности. Это обусловлено необходимостью постоянно подавать низковольтный ток на все ячейки. Без этого пиксели будут «включаться» и «выключаться» как обычные флуоресцентные лампы, то есть очень долго, непозволительно увеличивая время отклика. Таким образом, пиксели должны оставаться включенными, испуская свет низкой интенсивности, что, конечно, не может не сказаться на контрастности дисплея.

В конце 90-х гг. прошлого века Fujitsu удалось несколько смягчить остроту проблемы, улучшив контрастность своих панелей с 70:1 до 400:1.
К 2000 году некоторые производители заявляли в спецификациях панелей контрастность до 3000:1, сейчас - уже 10000:1+.
Процесс производства плазменных дисплеев несколько проще, чем процес производства LCD. В сравнении с выпуском TFT LCD-дисплеев, требующим использования фотолитографии и высокотемпературных технологий в стерильно чистых помещениях, «плазму» можно выпускать в цехах погрязнее, при невысоких температурах, с использованием прямой печати.
Тем не менее, век плазменных панелей недолог - совсем недавно среднестатистический ресурс панели равнялся 25000 часов, сейчас он почти удвоился, но проблему это не снимает. В пересчете на часы работы плазменный дисплей обходится дороже LCD. Для большого презентационного экрана разница не очень существенная, однако, если оснастить плазменными мониторами многочисленные офисные компьютеры, выигрыш LCD становится очевидным для компании-покупателя.
Еще один важный недостаток «плазмы» - большой размер пикселей. Большинство производителей неспособны создавать ячейки менее 0,3 мм - это больше, чем зерно стандартной LCD матрицы. Непохоже, чтобы в ближайшем будущем ситуация изменилась к лучшему. На среднесрочную перспективу такие плазменные дисплеи подойдут в качестве домашних телевизоров и презентационных экранов до 70+ дюймов размером. Если «плазму» не уничтожат LCD и появляющиеся каждый день новые дисплейные технологии, через какой-нибудь десяток лет она будет доступна любому покупателю.

Если вы желаете купить современную модель телевизора, то выбирать модель нужно особенно тщательно, так как на сегодняшний день существует много видов. В основном покупателей интересует, какой телевизор лучше: жидкокристаллический или плазменный? Перед тем, как определиться с выбором следует не только сравнить все достоинства и недостатки данных видов ТВ, но и выяснить, . Именно об этом мы и поговорим сегодня.


После того, как электронно-лучевые трубки стали чем-то из прошлого, а сами телевизоры стали более тонкими и легкими, каждая из технологий производства и отображения стала пытаться доказать, что она и есть самая лучшая. Такое соперничество, в свою очередь, привело к повышению качества телевизоров и попытке снизить цены. Однако, стоит сказать, что последнее получается не всегда, так как чем современней устройство, тем больше в нем различных функций, интерфейсов и т.д., а это автоматически увеличивает его стоимость, как ни крути.

Плазменный телевизор

На сегодняшний день существует не так уж много компаний, занимающихся производством плазменных телевизоров. Впервые такую технологию начала использовать компания Fujitsu из Японии. Современные модели мониторов, панелей и дисплеев производятся основываясь на их технологии. На сегодняшний день данная технология пользует большим спросом среди покупателей.

Перед тем как приобрести технику, следует разобраться, в чем разница между плазменным телевизором и плазменной панелью. Плазменная панель представляет собой монитор, к какому можно подключить DVD плеер или флешку для просмотра видео. ТВ-тюнер при этом в такой аппаратуре не предусмотрен, поэтому если вы хотите купить полноценный телевизор, лучше выбирать модель, в какой он все-таки присутствует.

Покупая плазменный телевизор, выбирайте модели от известных компаний, которые дают гарантию на свою технику от года. Чем больше гарантия, тем лучше устройство. При этом важно учитывать и то, есть ли сервисный центр данного производителя в вашем городе.

ЖК телевизор

LCD дисплеи появились 20 лет назад и довольно быстро стали популярными среди пользователей. На сегодняшний день существует много моделей с большой диагональю, маленьким весом и толщиной экрана. Такие параметры телевизора позволяют при желании устанавливать его при помощи кронштейна на стене, на специальной подвесной полочке, встраивать его в мебель и стены.

Такие телевизоры стоят дешевле, чем плазменные, обладающие теми же габаритами. Кроме того, у таких дисплеев нередко цветопередача и яркость оказывается заметно лучше, чем у плазменных моделей. Это обусловлено тем, что такие ТВ обладают довольно хорошим разрешением.

Технологические особенности ЖК телевизоров

Такой дисплей состоит из двух пластин и жидких кристаллов, размещенных между ними. Прозрачные отполированные пластины обладают такими же прозрачными электродами, через которые передается напряжение к ячейкам матрицы.

Жидкие кристаллы между такими пластинами располагаются особым образом. Через поляризатор, установленный возле пластин, проходит луч света, который разворачивается под прямым углом. Дополняет эту конструкцию подсветка и светофильтр с RGB цветами.

Чтобы увеличить скорость действия в данных устройствах, выпускаются специальные тонкопленочные транзисторы, больше известные, как TFT. Благодаря им каждая ячейка управляется отдельно. Из-за этого скорость отклика может достигать 8 миллисекунд.

Технологические особенности плазмы

Плазма также состоит из таких же пластин с электродами, как и у ЖК мониторов. Разница в том, что вместо жидких кристаллов пространство между ними заполняется такими инертными газами, как аргон, неон, ксенон или их соединения. Каждая из ячеек окрашена определенным люминофором, какой определяет будущий цвет пикселя. Одна ячейка отделена от другой перегородкой, не пропускающей ультрафиолетовой излучение или свет от другой ячейки. Благодаря этому достигается максимальный уровень контраста, вне зависимости от интенсивности внешнего освещения.

При подаче на определенную ячейку напряжения, она начинает светиться тем цветом, в какой окрашен ее люминофор. Разница между такими телевизорами и LCD в том, что каждая из ячеек сама по себе излучает свет, поэтому подсветка такого дисплея не требуется.

Сравнительная характеристика плазменных и жидкокристаллических панелей

Характеристика

Победитель

Детали

Размер экрана Не так давно ЖК телевизоров с большой диагональю практически не существовало, и неоспоримым победителем были плазменные телевизоры, поэтому вопроса выбора плазма или ЖК не появлялось. Но время идет и на сегодняшний день LCD модели практически догнали плазму. Поэтому разница по этому критерию пропала и определить победителя очень не просто.
Контрастность Это происходит в связи с тем, что плазменные ТВ сами излучают свет, что и делает изображение лучше и насыщеннее.
Блики при ярком освещении Яркость ламповой подсветки позволяет рассмотреть изображение на экране даже при условиях яркого освещения или прямого попадания солнечных лучей. Плазменные же панели будут давать блики.
Глубина черного Причина проигрыша ЖК телевизора по этому параметру такая же. Из-за дополнительного освещения, черный является менее глубоким, чем у плазмы, где его глубина достигается благодаря тому, что на данную ячейку просто не поступает электричество.
Быстрота отклика Через инертный газ электричество передается практически моментально, поэтому проблем не появляется. А вот у старых моделей ЖК дисплеев при быстро движущейся картинки могли появляться тени. Но сегодня, благодаря технологии TFT, быстрота отклика в таких телевизорах уменьшилась до 8 миллисекунд. Поэтому, если выбрать новую модель телевизора, никаких артефактов вы замечать не будете.
Угол обзора У плазменных ТВ угол обзора начинался с 160 градусов, а вот старая жидкокристаллическая модель телевизора может иметь угол обзора всего лишь 45 градусов. Но если вы выберете одну из современных моделей, то переживать не стоит, так как на сегодняшний день угол обзора в LCD телевизорах и плазме – одинаковый.
Равномерность освещения У плазменных ТВ равномерность освещения обеспечивается тем, что каждый из пикселей сам по себе является источником света и светится так же, как и другие. В LCD телевизорах равномерность освещения зависит от лампы, однако все равно равномерности добиться непросто.
Выгорание экрана Выгорание экрана в основном грозит плазменным дисплеям при просмотре статического изображения. У всех предметов со временем могут появиться несуществующие тени, что, на самом-то деле, поправимо. Это общая проблема для устройств, содержащих фосфор. В LCD мониторах его нет, а, следовательно, и такая проблема им не грозит.
Энергоэффективность ЖК телевизоры потребляют почти в 2 раза меньше электроэнергии, чем плазменные. Это происходит из-за того, что основное количество энергии в плазменных ТВ уходит на охлаждение и мощные вентиляторы, а вот в ЖК панелях кроме лампы освещения практически ничего не задействовано.
Долговечность У LCD ТВ срок службы может доходить до 100 000 часов, в то время как у плазмы не более 60 000 часов. Кроме того, для ЖК экранов данная цифра означает ресурс лампы подсветки, а у плазмы – ресурс матрицы. Если вы выберете плазму, то к тому времени, когда пройдут эти 60 000 часов, яркость экрана станет в 2 раза меньше.
Совместимость В принципе, и у плазменных и у жидкокристаллических современных телевизоров хватает набора разнообразных функций и интерфейсов. Это может быть и возможность подключения различных игровых консолей, аудиосистем, функции Smart TV и 3D. Однако, ЖК дисплеи побеждают из-за того, что они лучше всего подходят для использования их с компьютером. На них лучше видны различные схемы и графики, так как на один дюйм используется больше пикселей, чем в плазменных мониторах.
Стоимость Плазменные ТВ на данный момент стоят заметно больше, чем жидкокристаллические модели с такой же диагональю.

В итоге можно сказать, что плазменные панели обладают лучшей цветопередачей и быстротой отклика, а жидкокристаллические модели более энергоэффективные, долговечны и не подвержены выгоранию экрана. Поэтому перед тем, как выбрать, что вам нужно: ЖК или плазма, определитесь с тем, что для вас самое главное в подобном устройстве.

Что такое плазма?

Основа каждой плазменной панели - это собственно плазма, т. е. газ, состоящий из ионов (электрически заряженных атомов) и электронов (отрицательно заряженных частиц). В нормальных условиях газ состоит из электрически нейтральных, т. е. не имеющих заряда частиц.

Отдельные атомы газа содержат равное число протонов (частиц с положительным зарядом в ядре атома) и электронов. Электроны `компенсируют` протоны, таким образом, что общий заряд атома равен нулю. Если ввести в газ большое число свободных электронов, пропустив через него электрический ток, ситуация меняется радикально. Свободные электроны сталкиваются с атомами, `выбивая` все новые и новые электроны. Без электрона меняется баланс, атом приобретает положительный заряд и превращается в ион. Когда электрический ток проходит через образовавшуюся плазму, отрицательно и положительно заряженные частицы стремятся друг к другу. Среди всего этого хаоса частицы постоянно сталкиваются.

Столкновения `возбуждают` атомы газа в плазме, заставляя из высвобождать энергию в виде фотонов. В плазменных панелях используются в основном инертные газы - неон и ксенон. В состоянии `возбуждения` они испускают свет в ультрафиолетовом диапазоне, невидимом для человеческого глаза. Тем не менее, ультрафиолет можно использовать и для высвобождения фотонов видимого спектра.

История создания плазменных панелей или экранов

Все было для оборонки. Даже если сами ученые думали, что работают для собственного удовольствия. Они заблуждались.

Шел 1963 год. Дональд Битцер из Университета штата Иллинойс работал над обучающими системами, позволяющими отображать не только буквы и цифры, как было в то время, но и графику. Успехи на данном поприще были неважные.

В конце концов Битцер набрал команду для работы над новым проектом. Он собирался выяснить, как будет работать матрица из неоновых ячеек, если сквозь них пропускать высокочастотный электрический ток.

Для своей работы Битцер привлек Жене Слоттова и студента Роберта Вильсона. Как шли дела, теперь уже не выяснить, только в патент на изобретение вписаны все три имени.

Летом 1964 года появился первый плазменный дисплей. На современные панели он был похож весьма отдаленно. Смешно, но он состоял всего из одного единственного пикселя. Сейчас в каждой панели их - миллионы.

Естественно, дисплей из одного пикселя - не дисплей. Однако, не прошло и десяти лет, как приемлемые результаты были достигнуты. В 1971 году фирме Owens-Illinois была продана лицензия на производство дисплеев Digivue.

В 1983 году Университет Иллинойса заработал ни много ни мало, миллион долларов за продажу лицензии на «плазму» компании IBM. Это сейчас она стала понемногу отходить в тень, а тогда сильнее игрока на рынке компьютеров вообще не было.

Плазменные дисплеи были впервые использованы в PLATO компьютерные терминалы. Это PLATO V модель иллюстрирует дисплея монохроматическом оранжевого свечения видели, как в 1981 году.

В том же году появилась панель IBM 3290 Information Panel - первый коммерческий продукт, выпускавшийся массовыми тиражами.

Уже в 1982 году начали выпускать дисплеи Plasmascope для контроля пусков баллистических ракет наземного базирования. Правда, в то время это им не очень помогло. В общем, компьютерные фирмы довольно быстро забросили плазменные панели. Последней от их производства отказалась IBM в 1987 году. К тому времени "плазму" выпускал в ограниченных количествах только Пентагон. У него-то денег всегда было в достатке.

К началу девяностых появились коммерческие LCD-дисплеи и дела у плазмы пошли совсем неважно. Тогда выпускались лишь черно-белые плазменные панели и конкурировать с LCD они, в общем, не могли. Да и проблемы с контрастностью не радовали - этот показатель хромал даже у самых продвинутых моделей. Тем не менее, «плазма» прижилась в компании Matsushita, теперь известной, как Panasonic. В 1999 году был, наконец, создан, перспективный 60-дюймовый прототип с замечательными яркостью и контрастностью, лучшей в отрасли.

В конце 90-х гг. прошлого века Fujitsu удалось несколько смягчить остроту проблемы, улучшив контрастность своих панелей с 70:1 до 400:1. К 2000 году некоторые производители заявляли в спецификациях панелей контрастность до 3000:1, сейчас - уже 10000:1+. Процесс производства плазменных дисплеев несколько проще, чем процес производства LCD. В сравнении с выпуском TFT LCD-дисплеев, требующим использования фотолитографии и высокотемпературных технологий в стерильно чистых помещениях, `плазму` можно выпускать в цехах погрязнее, при невысоких температурах, с использованием прямой печати.

Технология плазменных экранов

Основываясь на информации видеосигнала, мощный пучок электронов «зажигает» тысячи маленьких точек, называемых пикселями. В большинстве систем всего три цвета пикселей - красный, зеленый и синий, - которые равномерно распределены по всему экрану. Благодаря смешиванию этих цветов в различных пропорциях телевизоры могут воссоздавать всю гамму оттенков.

Изображение на плазменной панели создается путем свечения маленьких цветных флуоресцентных лампочек. Каждый пиксель сделан из трех флуоресцентных лампочек - красной, зеленой и синей. Благодаря разной яркости лампочек, как и ЭЛТ телевизоры, плазменные панели могут воспроизводить всю цветовую гамму.

Центральным элементом флуоресцентных лампочек является плазма - газ, состоящий из свободных ионов (заряженных атомов) и электронов (отрицательно заряженных частиц). В обычных условиях газ состоит из незаряженных частиц, то есть атомов с равным количеством протонов (положительно заряженных частиц, расположенных в ядре атома) и электронов. Отрицательно заряженные электроны нейтрализуют положительно заряженные протоны, вследствие чего суммарный заряд атома равняется нулю.

Если вы добавите в газ большое количество свободных электронов, пропуская через него электрический разряд, ситуация изменится очень быстро. Свободные электроны, сталкиваясь с атомами, <выбивают> из них валентные электроны. При потере электрона, атом приобретает положительный заряд и, тем самым, становится ионом.

Когда через плазму пропускается электрический ток, отрицательно заряженные частицы притягиваются к положительно заряженной области плазмы, и наоборот.

Стремительно двигаясь, частицы постоянно сталкиваются друг с другом. Эти столкновения возбуждают атомы газа в плазме, и они испускают фотоны.

Атомы ксенона и неона, использующиеся в плазменных панелях, в возбужденном состоянии испускают фотоны света. В основном это фотоны ультрафиолета, которые не видны невооруженным глазом, но, как мы увидим в следующем параграфе, они могут активировать видимые фотоны света.

Внутри панели: газ и электроды

В плазменных панелях ксенон и неон содержится в сотнях маленьких микрокамер, расположенных между двумя стеклами. С обеих сторон, между стеклами и микрокамерами, располагаются два длинных электрода. Управляющие электроды расположены под микрокамерами, вдоль тылового стекла. Прозрачные сканирующие электроды, окруженные слоем диэлектрика и покрытые защитным слоем оксида магния, расположены над микрокамерами, вдоль фронтального стекла.

Электроды расположены крест-накрест во всю ширину экрана. Сканирующие электроды расположены горизонтально, а управляющие электроды - вертикально. Как вы можете видеть ниже, на диаграмме, вертикальные и горизонтальные электроды формируют прямоугольную сетку.

Для ионизации газа в определенной микрокамере, процессор заряжает электроды непосредственно на пересечении с этой микрокамерой. Тысячи подобных процессов происходят за долю секунды, заряжая по очереди каждую микрокамеру.

Когда пересекающиеся электроды заряжены (один отрицательно, а другой положительно), через газ в микрокамере проходит электрический разряд. Как было сказано ранее, этот разряд приводит заряженные частицы в движение, вследствие чего атомы газа испускают фотоны ультрафиолета.

Плазменный экран

Плазменные панели немного похожи на ЭЛТ-телевизоры - покрытие дисплея использует способный светиться фосфоросодержащий состав. В то же время они, как и LCD, используют сетку электродов с защитным покрытием из оксида магния для передачи сигнала на каждый пиксель-ячейку.Ячейки заполнены интернтыми` газами - смесью неона, ксенона, аргона. Проходящий через газ электрический ток заставляет его светиться.

По сути, плазменная панель представляет собой матрицу из крошечных флуоресцентных ламп, управляемых при помощи встроенного компьютера панели. Каждый пиксель-ячейка является своеобразным конденсатором с электродами. Электрический разряд ионизирует газы, превращая их в плазму - т. е. электрически нейтральную, высокоионизированную субстанцию, состоящую из электронов, ионов и нейтральных частиц.

Будучи электрически нейтральной, плазма содержит равное число электронов и ионов и является хорошим проводником тока. После разряда плазма испускает ультрафиолетовое излучение, заставляющий светиться фосфорное покрытие ячеек-пикселей. Красную, зеленую или синюю составляющую покрытия. На самом деле каждый пиксель делится на три субпикселя, содержащих красный, зеленый либо синий фосфор. Для создания разнообразных оттенков цветов интенсивность свечения каждого субпикселя контролируется независимо. В кинескопных телевизорах это делается путем изменения интенсивности потока электронов, в `плазме` - при помощи 8-битной испульсной кодовой модуляции. Общее число цветовых комбинаций в этом случае достигает 16,777,216 оттенков.

Тот факт, что плазменные панели сами являются источником света, обеспечивает отличные углы обзора по вертикали и горизонтали и великолепную цветопередачу (в отличие от, например, LCD, экраны в которых обычно нуждаются в подсветке матрицы).

Внутри дисплея

В плазменном телевизоре `пузырьки` газов неона и ксенона размещены в сотни и сотни тысяч маленьких ячеек, сжатых между двумя стеклянными панелями. Между панелями по обеим сторонам ячеек расположены также длинные электроды. `Адресные` электроды находятся за ячейками, вдоль задней стеклянной панели. Прозрачные электроды покрыты диэлектриком и защитной пленкой оксида магния (MgO). Они располагаются над ячейками, вдоль передней стеклянной панели.

Обе `сетки` электродов перекрывают весь дисплей. Электроды дисплея выстроены в горизонтальные ряды вдоль экрана, а адресные электроды расположены вертикальными колонками. Как видно на рисунке ниже, вертикальные и горизонтальные электроды формируют базовую сетку. Для того, чтобы ионизировать газ в отдельной ячейке, компьютер плазменного дисплея заряжает те электроды, которые на ней пересекаются. Он делает это тысячи раз за малую долю секунды, заряжая каждую ячейку дисплея по очереди. Когда пересекающиеся электроды заряжены, через ячейку проходит электрический разряд. Поток заряженных частиц заставляет атомы газа высвобождать фотоны света в ультрафиолетовом диапазоне. Фотоны взаимодействуют с фосфорным покрытием внутренней стенки ячейки. Как известно, фосфор - материал, под действием света сам испускающий свет. Когда фотон света взаимодействует с атомом фосфора в ячейке, один из электронов атома переходит на более высокий энергетический уровень. После чего электрон смещается назад, при этом высвобождается фотон видимого света.

Пиксели в плазменной панели состоят из трех ячеек-субпикселей, каждая из которых имеет свое покрытие - из красного, зеленого или синего фосфора. В ходе работы панели эти цвета комбинируются компьютером, создаются новые цвета пикселя. Меняя ритм пульсации тока, проходящего через ячейки, контрольная система может увеличивать или уменьшать интенсивность свечения каждого субпикселя, создавая сотни и сотни различных комбинаций красного, зеленого и синего цветов. Главное преимущество производства плазменных дисплеев - возможность создавать тонкие панели с широкими экранами. Поскольку свечение каждого пикселя определяется индивидуально, изображение выходит потрясающе ярким, причем при просмотре под любым углом. В норме насыщенность и контрастность изображения несколько уступает лучшим моделям ЭЛТ-телевизоров, но вполне оправдывает ожидания большинства покупателей. Главный недостаток плазменных панелей - их цена. Дешевле пары тысяч долларов новую плазменную панель купить невозможно, модели hi-end класса обойдутся в десятки тысяч долларов. Впрочем, с течением времени технология значительно усовершенствовалась, цены продолжают падать. Сейчас плазменные панели начинают уверенно теснить ЭЛТ-телевизоры. особенно это заметно в богатых, технологически развитых странах. В ближайшем будущем `плазма` придет в дома даже небогатых покупателей.

Срок службы плазменных панелей

Срок службы плазменных панелей измеряется относительно полупериода сгорания газообразного фосфора. Как утверждают производители, после сгорания всего фосфора качество изображения значительно ухудшается по сравнению с первоначальным, и, возможно, потребуется заменить панель. В рассматриваемом случае полупериод сгорания - ровно половина срока службы панели.

После 1000 часов эксплуатации уровень яркости составляет примерно 94% от первоначального.

Так как фосфор сгорает с постоянной интенсивностью, качество изображения ухудшается пропорционально скорости распада. Можете считать этот процесс просто «свечением» фосфора. Сразу после включения плазменного телевизора, фосфор, содержащийся в экране, начинает медленно сгорать. Таким образом, газа для свечения экрана остается все меньше. Вследствие этого яркость и насыщенность цвета постепенно уменьшаются. После 1000 часов эксплуатации уровень яркости составляет примерно 94% от первоначального; после 15000-20000 - около 68% (т.е. светится 68% фосфора). Многое зависит от уровня контрастности. Если Вы хотите, чтобы плазменная панель прослужила дольше, снизьте показатель контрастности в экранном меню. Если Вы выставите показатель контрастности на максимум, фосфор будет сгорать намного быстрее.

Большинство производителей утверждает, что срок службы их панелей при «нормальном» уровне контрастности (около 50%) составляет приблизительно 30000 часов. Однако, недавно некоторые компании-производители, особенно Sony и Panasonic, заявили, что период спада качества изображения их новых плазменных телевизоров наступает лишь после 60000 часов использования. Мы немного скептично относимся к заявлениям подобного рода. Хотя и осознаём, сколь много было сделано для увеличения срока службы плазменных телевизоров (например, повышенная устойчивость зеленого фосфора), все же поверим этим данным только после того, как они подтвердятся в реальных условиях, а не только теоретически.

С точки зрения покупателей 30000 часов должно быть достаточно, так как срок службы ЭЛТ телевизоров примерно тот же. С другой стороны, согласно исследованию американских статистических компаний, обычная семья в среднем смотрит телевизор от 4 до 6 часов в день; соответственно, срок службы плазменной панели составит от 13 до 20 лет.

Как продлить срок службы панели?

Следуйте приведенным ниже указаниям, чтобы продлить срок службы вашего плазменного телевизора:

  • 1) Выставляйте уровень ЯРКОСТИ и КОНТРАСТНОСТИ в соответствии с условиями просмотра. Старайтесь не увеличивать уровень Контрастности без необходимости - это только быстрее сжигает фосфор. В ярко освещенных комнатах Вам, возможно, потребуется повышенная Контрастность; ночью или в затемненных помещениях уровень Контрастности следует снизить.*
  • 2) Не оставляйте статичное изображение на экране на длительные периоды времени (более 20 минут). В противном случае на экране появится остаточное изображение.
  • 3) После просмотра выключайте плазменную панель.
  • 4) Используйте плазменный телевизор в помещениях с хорошей вентиляцией. Благодаря качественной системе вентиляции плазменный экран прослужит дольше.

* Последнее время большинство производителей «выносят» опцию корректировки контрастности на пульт ДУ; заходить при этом в экранное меню не требуется.

Как избежать выгорания плазменной панели?

Помимо вопроса о сроке службы плазменных телевизоров, покупатели часто интересуются проблемой выгорания экрана, которая, как утверждают производители, является следствием неправильной эксплуатации панели. Все это очень серьезно; соответственно встает вопрос: Что же такое выгорание плазменных панелей, и как необходимо их использовать, чтобы избежать подобного эффекта?

Чаще всего эффект выгорания встречается на экранах банкоматов. Все мы хорошо знакомы с результатом того, что одна и та же картинка - раздел меню «вставьте карточку» - отображается на экране слишком долго. Замечали, как в течение всей операции с банкоматом на заднем фоне неясно вырисовывается эта серая надпись? Это и есть эффект выгорания экрана; он постоянен.

Не вдаваясь в технические подробности, выгорание - это поврежденный пиксель, чей фосфор был преждевременно израсходован и, поэтому, он светится слабее, чем окружающие его пиксели. Причина кроется в том, что поврежденный пиксель «запоминает» цвет, которым он светился длительное время. Этот цвет «выжигается» на стекле плазменного экрана (отсюда берет свое начало термин «выгорание»). Поврежденный фосфор не может светиться также как обычный.

Пиксели обычно не выгорают поодиночке, так как этот эффект появляется вследствие продолжительного отображения статичной картинки на плазменном экране - например, сетевых логотипов, компьютерных иконок, окошек Интернет браузеров и т.д.

Советы


  • Не оставляйте статичное изображение на экране панели. Всегда выключайте панель после просмотра. Не ставьте DVD на паузу на длительное время.
  • Плазменные экраны чаще подвержены выгоранию в течение первых 200 часов использования. «Свежий» фосфор сгорает быстрее, чем уже использованный. Это означает, что на экране новых плазменных панелей чаще возникает «ореол» после длительного проецирования статичного изображения. Вероятно, это происходит вследствие того, что из-за высокой яркости «свежий» фосфор взрывается. Обычно подобный эффект исчезает через некоторое время сам по себе. Если оставлять статичное изображение на экране на длительное время, то за эффектом ореола может последовать выгорание экрана.

Меры предосторожности: Будьте внимательны при первом включении панели. Выставьте уровень КОНТРАСТНОСТИ не более 50% - превышение повлечет за собой более интенсивное сгорание фосфора и, как следствие, выгорание экрана. Используйте предусмотренные функции защиты от выгорания - например, функцию серого изображения, которая при помощи повторной калибровки яркости пикселей устраняет эффект ореола. В идеале эту функцию следует применять приблизительно через каждые 100 часов использования плазменной панели. (Замечание: Эти процессы влияют на ресурс фосфора, так что их следует использовать только при необходимости.)

Некоторые плазменные панели выгорают чаще других. По наблюдениям, пользователи панелей типа AliS - производства компаний Hitachi и Fujistu - чаще сталкиваются с проблемой выгорания экрана.
Используйте функции защиты от выгорания, такие как управление режимом электропитания, регулятор изображения (по вертикали и горизонтали) и автоматический хранитель экрана. Проверьте руководство пользователя на предмет дополнительной информации.

Важно понять, что качество изображения напрямую зависит от выгорания экрана. Вы хотите приобрести плазменный телевизор для просмотра ТВ- программ формата 4:3. Не следует оставлять черные полосы на экране плазменного телевизора на долгое время; поэтому, ТВ-программы лучше смотреть в широкоэкранном режиме (16:9). При хорошем масштабировании Вы не заметите существенной разницы в качестве изображения.

Высококачественные телевизоры более устойчивы к выгоранию, хотя и не полностью. Из всех плазменных панелей, которые приходилось тестировать, менее всего подверженными выгоранию оказались модели компании NEC, Sony, Pioneer и Panasonic. Но несмотря на это, эксперты НИКОГДА, независимо от качества панели, не оставляют статичное изображение на экране дольше чем на час.

Вы должны понимать, что некоторые приложения не подходят для использования с плазменными панелями.

Например, статичное отображение расписания полетов в аэропорте. Зачастую можно удивиться, заходя в аэропорт, свисающему с потолка абсолютно выгоревшему плазменному монитору. Единственное для чего они используются - проецирование одной и той же информации часами. Это один из многочисленных примеров, где плазменные панели используются не по назначению. (Заметьте, последнее время в аэропортах стали использовать новое программное обеспечение, которое во избежание выгорания плазменного монитора постоянно перемещает изображение.)

Выводы

Эффект выгорания не является причиной, по которой не стоит покупать плазменные телевизоры. При надлежащем использовании большинство пользователей плазменных панелей никогда не столкнется с проблемой остаточного изображения. Иногда может возникать эффект ореола, но это не повод для беспокойства. В действительности, небрежность в обращении - то есть безразличие к тому, что и как долго показывает плазменная панель, - является основной причиной выгорания экрана.

Сервисный центр "MTechnic" осуществляет профилактику, диагностику и ремонт LCD-телевизоров, ремонт проекционных телевизоров и ремонт плазменных панелей следующих марок: Sony (Сони), Thomson (Томсон), Toshiba (Тошиба), Panasonic (Панасоник), Lg (Эл Джи), Philips (Филипс), Grundig (Грюндик), Samsung (Самсунг), RFT (РФТ) и других производителей.

Территория охвата: Москва, Зеленоград, Московская область (МО). Для вашего удобства работает наша курьерская служба (бесплатно), подробнее в разделе "контакты "

Корпус

Индикаторы

Индикаторы устанавливаются в основном на компьютеры и периферийные устройства. Они представляют собой различные светодиоды, небольшие экраны, или бывают позаимствованы из других устройств. Простым примером индикатора может быть амперметр, поставленный на провод идущий к жесткому диску. При работе с памятью, стрелка будет двигаться. Но индикатор может нести помимо декоративной и информативную функцию - датчик температуры внутри системного блока сообщит вам, если компьютер перегреется. Самые сложные индикаторные системы собираются на микроконтроллере и содержат дисплей, способный показывать текст и даже графику, иногда в цвете. Проектирование таких схем достаточно сложно. В этом нелегком деле помогут учебники по цифровой технике и микроконтроллерам.

Иногда для воплощения творческого замысла моддер принимает решение вместо переделки существующего корпуса купить другой, более красивый, либо вообще сделать новый (иногда с использованием деталей существующего). Часто, особенно при использовании специально предназначенных для моддинга миниатюрных материнских плат (например, Mini-ITX), компьютер собирается в корпусе от какого-либо иного технического устройства, например, пылесоса (такой мод реально существует). Интересным решением является использование полностью прозрачного корпуса. Ввиду того, что готовый прозрачный корпус дорог (около 150 долларов), его часто изготавливают самостоятельно с нуля. При изготовлении корпуса нужно помнить, что металл используется не случайно. Компьютер генерирует очень много радиопомех, а металлический корпус поглощает их. Прозрачный корпус может ухудшить работу радиоприемников, телевизоров и высококачественной аудиоаппаратуры вблизи компьютера, так что будьте готовы к необходимости экранирования корпуса. То же самое относится и к корпусам из дерева. В некоторых странах (не в России) неметаллические корпуса запрещены.


Мониторы

Век мониторов с электронно-лучевой трубкой неотвратимо уходит в прошлое. Невероятно, но за каких-то полгода многостраничные журнальные обзоры новейших моделей традиционных мониторов уступили место обстоятельным описаниям свойств плоскопанельных дисплеев, прежде всего жидкокристаллических, а теперь и плазменных. Да, технологии не стоят на месте, и вот уже плазма, высшее энергетическое состояние вещества, работает там, где требуется молниеносная скорость обмена информацией, поразительная оперативность, ослепительная новизна. Однако коммерческий цикл любого изобретения не вечен, и вот уже производители, запустившие массовое производство LCD-панелей, готовят следующее поколение технологий изображения информации. Устройства, которые придут на замену жидкокристаллическим, находятся на разных стадиях развития. Некоторые, такие, как LEP (Light Emitting Polymer - ветоизлучающие полимеры), только выходят из научных лабораторий, а другие, например, на основе плазменной технологии, уже представляют собой законченные коммерческие продукты. Хотя плазменный эффект известен науке довольно давно (он был открыт в лабораториях Иллинойского университета в 1966 году), плазменные панели появились только в 1997 году в Японии. Почему так произошло? Это связано и с дороговизной таких дисплеев, и с их ощутимой "прожорливостью" - потребляемой мощностью. Хотя технология изготовления плазменных дисплеев несколько проще, чем жидкокристаллических, тот факт, что она еще не поставлена на поток, способствует поддержанию высоких цен на этот пока экзотический товар. Несравненное качество изображения и уникальные конструктивные особенности делают информационные панели на плазменной технологии особенно привлекательными для государственного и корпоративного сектора, здравоохранения, образования, индустрии развлечений.


По способу формирования изображения мониторы можно разделить на две группы:

  • Жидкокристаллические экраны
  • Плазменные дисплеи
  • C электронно лучевой трубкой(ЭЛТ)

Плазменные дисплеи.

Разработка плазменных дисплеев, начатая еще в 1968 г., базировалась на применении плазменного эффекта, открытого в Иллинойсском университете в 1966 г.
Сейчас принцип действия монитора основан на плазменной технологии: используется эффект свечения инертного газа под воздействием электричества (примерно так же, как работают неоновые лампы). Заметим, что мощные магниты, входящие в состав динамических излучателей звука, расположенных рядом с экраном, никак не влияют на изображение, поскольку в плазменных устройствах (как и в ЖК) отсутствует такое понятие, как электронный луч, а заодно и все элементы ЭЛТ, на которые так воздействует вибрация.

Формирование изображения в плазменном дисплее происходит в пространстве шириной примерно 0,1 мм между двумя стеклянными пластинами, заполненном смесью благородных газов – ксенона и неона. На переднюю, прозрачную пластину нанесены тончайшие прозрачные проводники, или электроды, а на заднюю – ответные проводники. Подавая на электроды электрическое напряжение, можно вызвать пробой газа в нужной ячейке, сопровождающийся излучением света, который и формирует требуемое изображение. Первые панели, заполнявшиеся в основном неоном, были монохромными и имели характерный оранжевый цвет. Проблема создания цветного изображения была решена путем нанесения в триадах соседних ячеек люминофоров основных цветов – красного, зеленого и синего и подбора газовой смеси, излучающей при разряде невидимый глазом ультрафиолет, который возбуждал люминофоры и создавал уже видимое цветное изображение (три ячейки на каждый пиксель).

Однако, у традиционных плазменных экранов на панелях с разрядом постоянного тока имеется и ряд недостатков, вызванных физикой процессов, происходящих в данном типе разрядной ячейки.

Дело в том, что при относительной простоте и технологичности панели постоянного тока, уязвимым местом являются электроды разрядного промежутка, которые подвергаются интенсивной эрозии. Это заметно ограничивает срок службы прибора и не позволяет достичь высокой яркости изображения, ограничивая ток разряда. Как следствие, не удаётся получить достаточного количества оттенков цвета, ограничиваясь в типичном случае шестнадцатью градациями, и быстродействия, пригодных для отображения полноценного телевизионного или компьютерного изображения. По этой причине плазменные экраны обычно использовались в качестве табло для демонстрации алфавитно-цифровой и графической информации.

Проблема может быть принципиально решена на физическом уровне путем нанесения на разрядные электроды диэлектрического защитного покрытия. Однако, такое простое на первый взгляд решение в корне меняет принцип работы всего устройства. Нанесенный диэлектрик не только защищает электроды, но и препятствует протеканию разрядного тока. На деле система электродов,покрытых диэлектриком, образует сложный конденсатор, через который протекают импульсы тока длительностью порядка сотни наносекунд и амплитудой в десятки ампер в моменты его перезаряда. При этом алгоритм управления с тановится более сложным и достаточно высокочастотным. Частота повторения импульсов сложной формы может достигать двухсот килогерц. Все это значительно усложняет схемотехнику системы управления, однако позволяет более, чем на порядок повысить яркость и долговечность экрана и дает возможность отображать полноцветное телевизионное и компьютерное изображение со стандартными кадровыми частотами.

В современных плазменных дисплеях, используемых в качестве мониторов для компьютера (причем конструкция является не наборной), используется так называемая технология - plasmavision - это множество ячеек, иначе говоря пикселей, которые состоят из трех субпикселей, передающих цвета - красный, зеленый и синий.

Газ в плазменном состоянии используется, чтобы реагировать с фосфором в каждом субпикселе, чтобы произвести цветной цвет (красный, зеленый или синий). Пиксел в плазменном (газоразрядном) дисплее напоминает обычную люминесцентную лампу - ультрафиолетовое излучение электрически заряженного газа попадает на люминофор и возбуждает его, вызывая видимое свечение. В некоторых конструкциях люминофор наносится на переднюю поверхность ячейки, в других - на заднюю, а передняя поверхность при этом изготавливается прозрачной. Каждый субпиксел индивидуально управляется электроникой и производит более чем 16 миллионов различных цветов. В современных моделях каждая отдельная точка красного, синего или зелёного цвета может светиться с одним из 256 уровней яркости, что при перемножении даёт около 16,7 миллионов оттенков комбинированного цветного пикселя (триады). На компьютерном жаргоне такая глубина цвета называется “True Color” и считается вполне достаточной для передачи изображения фотографического качества. Столько же дают обычные ЭЛТ. Яркость экрана последней разработки – 320 кД на кв.м при контрастности 400:1. Профессиональный компьютерный монитор даёт 350 кД, а телевизор – от 200 до 270 кД на кв.м при контрастности 150...200:1.

Эта диаграмма дает краткий обзор плазменной технологии. Компоненты диаграммы:

  1. Стадия электрического разряда
  2. Стадия возбуждения эммитера
  1. Внешний стеклянный слой
  2. Диэлектрический слой
  3. Слой Защиты
  4. Электрод отображения (приема)
  5. Поверхность разгрузки
  6. Ультрафиолетовые лучи
  7. Видимый свет
  8. Барьерное преграждение
  9. Флюоресценция (свечение)
  10. Электрод Адреса (корнирующий)
  11. Диэлектрический слой
  12. Внутренний стеклянный слой

Технологию плазменных мониторов удобно представить в виде следующей схемы:

Экран обладает следующими функциональными возможностями и характеристиками:

  • Широкий угол обзора как по горизонтали, так и по вертикали (160° градусов и более).
  • Очень малое время отклика (4 мкс по каждой строке).
  • Высокая чистота цвета (эквивалентная чистоте трех первичных цветовЭЛТ).
  • Простота производства крупноформатных панелей (недостижимая при тонкопленочном технологическом процессе).
  • Малая толщина - газоразрядная панель имеет толщину около одного сантиметра или менее, а управляющая электроника добавляет еще несколько сантиметров;
  • Отсутствие геометрических искажений изображения.
  • Широкий температурный диапазон.
  • Механическая прочность.

Внедрение двух новых технологических структур резисторной и фосфорной позволило получить яркость и срок службы экрана на уровне, необходимом для практических применений. Новая фотолитографическая технология, а также метод станбластинга сделали возможным выполнить 40-дюймовую плазменную панель с высокой точностью.

Основные достоинства.

В последнее время при создания систем отображения информации для различного рода диспетчерских начинают применяться газоплазменные дисплеи (плазменные панели).Плазменные дисплеи (PDP) являются одной из последних разработок в области систем отображения информации (первые PDP появились в Японии в1997 году). Таким образом, плазменные панели по качеству изображения намного превосходят даже хорошие кинескопы, которые считаются в наше время эталоном. При этом очень важно, что плазменные панели абсолютно безвредны для здоровья, в отличие от электронно-лучевых трубок.

Совершенно очевидно, что они приходят на смену существующим мониторам на электронно-лучевых трубках в силу явных преимуществ, таких как:

  • Компактность (глубина не превышает 10 - 15 см) и легкость при достаточно больших размерах экрана (40 - 50 дюймов).
  • Малую толщину - газоразрядная панель имеет толщину около одного сантиметра или менее, а управляющая электроника добавляет еще несколько сантиметров.
  • Высокую скорость обновления (примерно в пять раз лучше, чем у ЖК-панели).
  • Отсутствие мерцаний, и смазывания движущихся объектов, возникающих при цифровой обработке. поскольку отсутствует гашение экрана на время обратного хода, как в ЭЛТ.
  • Высокая яркость, контрастность и четкость при отсутствии геометрических искажений.
  • Отсутствие проблем сведения электронных лучей и их фокусировки присуще всем плоскопанельным дисплеям.
  • Отсутствие неравномерности яркости по полю экрана.
  • 100-процентное использование площади экрана под изображение.
  • Большой угол обзора, достигающий 160° и более.
  • Отсутствие рентгеновского и других вредных для здоровья излучений,поскольку не используются высокие напряжения.
  • Невосприимчивость к воздействию магнитных полей.
  • Не страдают от вибрации, как ЭЛТ-мониторы.
  • Отсутствие необходимости в юстировке изображения.
  • Механическую прочность.
  • Широкий температурный дипазон.
  • Небольшое время отклика (время между посылкой сигнала на изменение яркости пикселя и фактическим изменением) позволяет использовать их для отображения видео- и телесигнала.
  • Более высокая надежность.

Плазменный экран можно снимать видеокамерой, и картинка при этом не дрожит, так как используется другой принцип отображения информации

Все это делает плазменные дисплеи очень привлекательными для использования. К числу недостатков можно отнести ограниченную разрешающую способность большинства существующих плазменных мониторов, которая не превышает 640х480 пикселей. Исключение составляет модели PDP-V501MX и 502MX фирмы Pioneer. Обеспечивая реальное разрешение 1280х768 пиксел, данный дисплей имеет максимальный на сегодняшний день размер экрана 50 дюймов по диагонали (110х62 см) и хороший показатель по яркости (350 Nit), за счет новой технологии формирования ячеек, и улучшенный контраст. В результате данное устройство позволяет:

  • Отображать компьютерную информацию с реальным разрешением XGA (1024х768).
  • Обеспечить комфортное наблюдение видеоинформации на расстоянии до 5 метров.
  • Обеспечить контраст изображения около 20 при уровне внешней освещенности у экрана 150 - 200 Lux.

Таким образом, с нашей точки зрения, такие дисплеи уже пригодны для профессионального применения. Однако, следует иметь ввиду, что несмотря на существенные различия в технологии, плазменные дисплеи используют тот же люминофор, что и электронно-лучевые трубки, который в отличие от ЭЛТ возбуждается не электронами, а ультрафиолетовым излучением газового разряда и также подвержен деградации, хотя и в меньшей степени. Различные фирмы-изготовители называют ресурс от 15000 часов (NEC) до 20000-30000 (Pioneer) часов по критерию снижения яркости в два раза.

Поскольку изображение носит статичный характер, были приняты специальные меры по защите дисплеев от выгорания. В данном случае было разработано специальное программное обеспечение, установленное на управляющих компьютерах, позволяющее осуществлять "орбитинг", т. е. медленное, незаметное для глаз наблюдателя круговое перемещение изображения, что позволяет продлевать срок службы плазменных дисплеев в несколько раз. Возможна и аппаратная реализация данной функции. Существуют специальные устройства, например VS-200-SL фирмы Extron Electronics, реализущие "орбитинг" даже синхронно на нескольких дисплеях. Однако, следует иметь в виду, что эффективность данного метода защиты плазменных дисплеев от выгорания реализуется только при соблюдении определенных требований по характеру изображения. В частности, фон изображения не должен быть белым.

Основные недостатки.

К числу недостатков можно отнести ограниченную разрешающую способность большинства существующих плазменных мониторов, которая не превышает 640х480 пикселей. Исключение составляет модели PDP-V501MX и 502MX фирмы Pioneer. Обеспечивая реальное разрешение 1280х768 пиксел, данный дисплей имеет максимальный на сегодняшний день размер экрана 50 дюймов по диагонали (110х62 см) и хороший показатель по яркости (350 Nit), за счет новой технологии формирования ячеек, и улучшенный контраст.

К недостаткам плазменных дисплеев также можно отнести невозможность "сшивания" нескольких дисплеев в "видеостену" с приемлемым зазором из-за наличия широкой рамки по периметру экрана

Тот факт, что размер коммерческих плазменных панелей обычно начинается с сорока дюймов, свидетельствует о том, что производство дисплеев меньшего размера экономически нецелесообразно, поэтому мы вряд ли увидим плазменные панели, скажем, в портативных компьютерах. Это предположение подкрепляется и другим фактом: уровень энергопотребления "плазменников" подразумевает подключение их к сети и не оставляет никакой возможности работы от аккумуляторов. Еще один неприятный эффект, известный специалистам, - это интерференция, "перекрывание" микроразрядов в соседних элементах экрана. В результате подобного "смешивания" качество изображения, естественно, ухудшается.

Также к недостаткам плазменных дисплеев следует отнести то, что например средняя яркость белого цвета плазменных дисплеев составляет на настоящий момент порядка 300 кд/м2 у всех основных производителей. В общем и целом это достаточно ярко, однако плазменным дисплеям далеко до яркости ЭЛТ, составляющей 700 кд/м2. Подобная яркость может быть достигнута с повышением светоотдачи с 0,7 - 1,1 до 2 лм/Вт, однако этот рубеж преодолеть будет непросто. А также в настоящее время нельзя не заметить очень высокую цену плазменных дисплеев, доступных далеко не всем желающим.

Жидкокристаллические экраны.

Жидкий кристалл представляет собой некоторое состояние, в котором вещество обладает некоторыми свойствами как жидкости (текучестью), так и твердых кристаллов (например, анизотропией). Для изготовления ЖК-экранов используют так называемые нематические кристаллы, молекулы которых имеют форму палочек или вытянутых пластинок. ЖК-элемент помимо кристаллов включает в себя прозрачные электроды и поляризаторы. В отсутствие электрического поля молекулы нематических кристаллов образуют скрученные спирали. При прохождении в этот момент луча света через ЖК-элемент плоскость поляризации его поворачивается на некоторый угол. Если на входе и выходе этого элемента поместить поляризаторы, смещенные друг относительно друга на такой же угол, то свет беспрепятственно сможет проходить через этот элемент. Если же к прозрачным электродам приложено напряжение, спираль молекул распрямляется и поворота плоскости поляризации уже не происходит. Как следствие, выходной поляризатор не пропускает свет. Примером может служить ЖК-индикатор наручных электронных часов.
Экран ЖК-дисплея представляет собой матрицу ЖК-элементов. В настоящее время существуют два основных метода адресации ЖК-элементов: прямой (или пассивный) и косвенный (или активный). В пассивной матрице ЖК-элементов выбранная точка изображения активируется подачей напряжения на соответствующие прозрачные адресные проводники-электроды строки и столбца. В этом случае невозможно достичь высокого контраста изображения, так как электрическое поле возникает не только в точке пересечения адресных проводников, но и на всем пути распространения тока. Эта проблема вполне разрешима при использовании так называемой активной матрицы ЖК-элементов, когда каждой точкой изображения управляет свой электронный переключатель. Контраст при использовании активной матрицы ЖК-элементов может достигать значения от 50:1 до 100:1. Обычно активные матрицы реализованы на основе тонкопленочных полевых транзисторов (Thin Film Transistor, TFT). Неким компромиссом между активной и пассивной матрицей являются в настоящее время экраны, использующие технологию двойного сканирования (Dual Scan, DSTN), при которой одновременно обновляются две строки изображения.

В продолжение темы:
Linux

Социальная сеть «Фотострана» многим не нравится своей навязчивостью, что также проявляется, когда пользователь желает удалить свой аккаунт. В самой сети есть подводные камни,...

Новые статьи
/
Популярные