Использование спутниковой навигационной системы. Глобальные навигационные спутниковые системы-гнсс

Спутниковые системы позиционирования и навигации, изначально разрабатывавшиеся для военных нужд, в последнее время находят широкое применение в гражданской сфере. GPS/ГЛОНАСС мониторинг транспорта, наблюдение за нуждающимися в опеке людьми, контроль перемещений сотрудников, слежение за животными, отслеживание багажа , геодезия и картография – это основные направления использования спутниковых технологий.

В настоящее время существует две глобальных системы спутникового позиционирования, созданных в США и РФ, и две региональных, охватывающих Китай, страны Евросоюза и еще ряд стран Европы и Азии. В России доступен ГЛОНАСС мониторинг и GPS мониторинг.

Системы GPS и ГЛОНАСС

GPS (Global Position System, Глобальная система позиционирования) – это спутниковая система, разработка которой началась в Америке с 1977 года. К 1993 программу развернули, а к июлю 1995 – добились полной готовности системы. В настоящее время космическая сеть GPS состоит из 32 спутников: 24 основных, 6 резервных. Они вращаются вокруг Земли по средневысокой орбите (20 180 км) в шести плоскостях, по четыре основных спутника в каждой.

На земле расположена главная контрольная станция и десять станций слежения, три из которых передают спутникам последнего поколения корректировочные данные, а те распределяют их на всю сеть.

Разработка системы ГЛОНАСС (Глобальной навигационной спутниковой системы) начата еще в СССР в 1982 году. О завершении работ заявили в декабре 2015 года. Для работы ГЛОНАСС требуется 24 спутника, для покрытия территории и РФ достаточно 18, а общее число спутников, находящихся в данный момент на орбите (включая резервные) – 27. Они также движутся по средневысокой орбите, но на меньшей высоте (19 140 км), в трех плоскостях, по восемь основных спутников в каждой.

Наземные станции ГЛОНАСС расположены в России (14), Антарктиде и Бразилии (по одной), намечается развертывание ряда дополнительных станций.

Предшественником системы GPS была система Transit, разработанная в 1964 году для управления запуском ракет с подводных лодок. Она могла определить местонахождение исключительно неподвижных объектов с точностью до 50 м, а единственный спутник находился в поле видимости всего один час в сутки. Программа GPS ранее носила названия DNSS и NAVSTAR. В СССР создание навигационной спутниковой системы велось с 1967 года в рамках программы «Циклон».

Основные отличия системs мониторинга ГЛОНАСС от GPS:

  • американские спутники движутся синхронно с Землей, а российские – асинхронно;
  • разная высота и количество орбит;
  • разный угол их наклона (около 55° для GPS, 64,8° для ГЛОНАСС);
  • разный формат сигналов и рабочие частоты.
  • Преимущества системы GPS

  • GPS – старейшая из существующих систем позиционирования, приведена в полную готовность раньше российской.
  • Надежность обусловлена использованием большего числа резервных спутников.
  • Позиционирование происходит с меньшей погрешностью, чем у ГЛОНАСС (в среднем 4 м, а для спутников последнего поколения – 60–90 см).
  • Множество устройств поддерживает систему.


Преимущества системы ГЛОНАСС

  • Положение асинхронных спутников на орбите более стабильное, что облегчает управление ими. Регулярное внесение корректив не требуется. Данное преимущество важно для специалистов, а не потребителей.
  • Система создана в России, поэтому обеспечивает уверенный прием сигнала и точность позиционирования в северных широтах. Это достигается за счет большего угла наклона спутниковых орбит.
  • ГЛОНАСС – это отечественная система, и останется доступной для россиян в случае отключения GPS.
  • Недостатки системы GPS

  • Спутники вращаются синхронно вращению Земли, поэтому для точного позиционирования требуется работа корректирующих станций.
  • Низкий угол наклона не обеспечивает хорошего сигнала и точного позиционирования в полярных областях и высоких широтах.
  • Право управления системой принадлежит военным, а они могут искажать сигнал или вообще отключить GPS для гражданских лиц или для других стран в случае конфликта с ними. Поэтому хотя GPS для транспорта точнее и удобнее, а ГЛОНАСС – надежнее.
  • Недостатки системы ГЛОНАСС

  • Разработка системы началась позже и до недавнего времени велась со значительным отставанием от американцев (кризис, финансовые злоупотребления, хищения).
  • Неполный комплект спутников. Продолжительность службы российских спутников ниже, чем американских, они чаще нуждаются в ремонте, поэтому точность навигации в ряде областей снижается.
  • Спутниковый мониторинг транспорта ГЛОНАСС дороже, чем GPS из-за высокой стоимости устройств, адаптированных к работе с отечественной системой позиционирования.
  • Недостаток программного обеспечения для смартфонов, КПК. Модули ГЛОНАСС проектировали для навигаторов. Для компактных портативных устройств на сегодняшний день более распространенный и доступный вариант – это поддержка GPS-ГЛОНАСС или только GPS.


Резюме

Системы GPS и ГЛОНАСС являются взаимодополняемыми. Оптимальное решение – это спутниковый GPS-ГЛОНАСС мониторинг. Устройства с двумя системами, например, GPS-маркеры с ГЛОНАСС-модулем «М-Плата» обеспечивают высокую точность позиционирования и уверенную работу. Если для позиционирования исключительно по ГЛОНАСС погрешность в среднем составляет 6 м, а для GPS – 4 м, то при использовании двух систем одновременно она снижается до 1,5 м. Но такие приборы с двумя микрочипами стоят дороже.

ГЛОНАСС разработана специально для российских широт и потенциально способна обеспечить высокую точность, из-за ее недоукомплектованности спутниками реальное преимущество пока на стороне GPS. Плюсы американской системы – это доступность и широкий выбор устройств с поддержкой GPS.

1.4.1 Структура спутниковых радионавигационных систем

Спутниковая радионавигационная система – специальный комплекс космических и наземных средств, программного обеспечения и технологий, предназначенных для решения широкого круга актуальных задач, связанных, прежде всего с оперативным и точным определением местоположения относительно Земного сфероида человека, транспортных средств, технических систем и объектов при решении навигационных, оборонных, инженерно-геодезических, геологоразведочных, экологических и других задач.

Принцип работы глобальных навигационных спутниковых систем основан на измерении расстояния от антенны на объекте (координаты которого необходимо получить) до спутников, положение которых известно с большой точностью.

Высокие эксплуатационные характеристики ГЛОНАСС и GPS NAVSTAR достигаются путем совместного функционирования 3-х основных сегментов: космического, сегмента управления, сегмента потребителя.

Структура спутниковых радионавигационных систем строится таким образом, чтобы для большинства потребителей постоянно были видны более 6-и спутников (минимум 4). Функциональное назначение космических аппаратов или спутников – это формирование и излучение сигналов необходимых для решения потребителями задачи позиционирования и контроля местоположения самого спутника.

Излучаемые спутниками сигналы содержат дальномерную и служебную составляющую. Дальномерная используется потребителями для определения навигационных параметров (дальность до спутника, вектор скорости потребителя и его пространственную ориентацию). Служебная составляющая содержит данные о координатах спутников, шкале времени, векторах скоростей спутников, шкале времени, векторах скоростей спутников и т.д. (для базовых станций).

Основное предназначение ГЛОНАСС – глобальная и оперативная навигация наземных, морских, воздушных и низкоорбитальных космических объектов. Термин «глобальная оперативная навигация» означает, что подвижной объект, оснащенный приемной навигационной аппаратурой, может в любом месте приземного пространства и в любой момент времени определить параметры своего движения – три координаты и три составляющие вектора скорости. Система разработана по заказу и находится в ведомстве Министерства Обороны РФ (Космические войска) и имеет статус системы двойного (военного и гражданского) назначения. Определено также, что федеральными органами исполнительной власти, ответственными за ее использование, поддержание и развитие, являются Министерство обороны РФ и Федеральное космическое агентство.

Спутники системы (не менее 21 рабочего и 3 запасных) равномерно располагаются в трех орбитальных плоскостях (рисунок 2). Радиус круговых орбит – 25510 км, что соответствует периоду обращения 11 ч 15 мин 44 с. Каждый спутник системы ГЛОНАСС передает непрерывные навигационные сигналы на собственной несущей частоте в поддиапазонах L1 и L2 (1.6 и 1.25 ГГц).


Рисунок 2. Созвездия спутников ГЛОНАСС и GPS NAVSTAR

Основой для формирования шкалы системного времени ГЛОНАСС является водородный стандарт частоты Центрального синхронизатора наземного комплекса управления системы .

Управление орбитальным сегментом ГЛОНАСС осуществляет наземный комплекс управления, который предназначен для контроля правильности функционирования, непрерывного уточнения параметров орбит, управления и информационного обеспечения всех космических аппаратов системы и состоит из следующих взаимосвязанных стационарных элементов (рисунок 3):

Центр управления системой (г. Краснознаменск, Московская область);

Центральный синхронизатор;

Сеть контрольных станций, рассредоточенных по всей территории России;

Система контроля фаз;

Кванто-оптические станции;

Аппаратура контроля навигационного поля.

Рисунок 3. Наземный комплекс управления ГЛОНАСС

Центральный синхронизатор формирует шкалу времени системы и опорные сигналы для беззапросных измерительных станций. Кванто-оптические станции предназначены для переодической калибровки радиотехнических каналов измерения дальности. Система контроля фаз обеспечивает измерение фазового и частотного сдвига сигналов спутника относительно эталона центрального синхронизатора.

GPS Navstar - это спутниковая система радионавигации и передачи точного времени. Основные сегменты GPS: орбитальная спутниковая группировка, система мониторинга и контроля, подразделение пользовательского оборудования. В качестве универсальной системы позиционирования GPS предоставляет уникальные сервисы, не предоставляемые в настоящее времени ни одной другой системой – это сверхточное трехмерное определение координат, измерение скорости и определение точного времени; всепогодность; работа в режиме реального времени; устойчивость к факторам окружающей среды.

GPS Navstar является итогом совместной работы Военно-Воздушных сил США, Центра ракетных вооружений, Воено-Космических сил, Лос-Анжелесской базы ВВС. Эти ведомства несут ответственность за развитие и разработку спутникового оборудования, наземных систем и пользовательского оборудования военного предназначения .

NAVSTAR формально состоит из спутниковой группировки в количестве 27-и спутников, расположенных на почти круговых орбитах с большой полуосью 26560 км, обеспечивающих радио-позиционирование и передачу сигналов точного времени как для военных целей, так и для гражданских потребителей услуг всего мира. Спутники размещаются в шести орбитальных плоскостях с наклонением 55º (рисунок 2). Спутники передают непрерывный навигационный сигнал в двух L-диапазонах (L1 – 1.5 и L2 – 1.2 ГГц) . Система является точным хранителем времени.

Контрольным сегментом являются станции управления и контроля. Их главными функциями являются:

Отслеживание орбит спутников;

Отслеживание и поддержка рабочего состояния спутников;

Формирование системного времени GPS Time;

Расчет эфемерид спутников и параметров часов;

Осуществление коррекции спутников на орбитах по мере необходимости.

Сигналы спутников системы GPS непрерывно отслеживаются со станций слежения, широко распределенных на земном шаре (рисунок 5). Оборудование станций слежения состоит преимущественно из GPS приемников с цезиевидыми стандартами частоты, метрологических инструментов и оборудования для передачи измерений через наземные и спутниковые линии связи на Главную станцию управления, которая находится на военно-воздушной базе Шривер, около города Колорадо Спрингс. Данные со станции слежения используются для определения и прогнозирования орбит спутников и поправок их часов.

Рисунок 5. Расположение станций контрольного сегмента GPS

Для точного позиционирования в геодезии используются приемники, работающие на несущей частоте (фазовые или геодезические приемники). Фазовые приемники бывают одночастотными и двухчастотными. Двухчастотные приемники позволяют определить координаты с более высокой точностью, так как позволяют учитывать влияние ионосферной рефракции.

Геодезические приемники работают в 2 основных режимах определения координат точек: статистическом и кинематическом. Наиболее точным является статический режим. В геодезической практике его используют для создания съемочного обоснования .

Кинематический режим менее точен, но он более продуктивен для быстрого определения пространственных координат пикетов. Режим кинематики реализуется следующим образом. На пункте с известными координатами устанавливается приемник, а второй приемник перемещается по пикетам. Оба приемника должны одновременно отслеживать одни и те же созвездия спутников.

Определение своего местоположения, как на суше, так и на море, в лесу или в городе - вопрос такой же актуальный на сегодняшний день, как и на протяжении прошлых веков. Эпоха открытия радиоволн существенно упростило задачу навигации и открыло новые перспективы перед человечеством во многих сферах жизни и деятельности, а с открытием возможности покорения космического пространства совершился огромный прорыв в области определения координат местоположения объекта на Земле. Для определения координат используется спутниковой системы навигации, который получает необходимую информацию от спутников, расположенных на орбите.

Сейчас в мире существуют две глобальных системы определения координат – российская ГЛОНАСС и американская NavStar, более известная как GPS (аббревиатура названия Global Position System – глобальная система позиционирования).

Cистема спутниковой навигации ГЛОНАСС была изобретена в Советском союзе еще в начале 80х годов прошлого века и первые испытания прошли в 1982 г. Она разрабатывалась по заказу Министерства Обороны и была специализирована для оперативной глобальной навигации наземных передвигающихся объектов.

Американская система навигации GPS по своей структуре, назначению и функциональности аналогична ГЛОНАСС и также разработана по заказу Министерства Обороны Соединенных Штатов. Она имеет возможность с высокой точностью определять как координаты наземного объекта, так и осуществлять временную и скоростную привязку. NavStar имеет на орбите 24 навигационных спутника, обеспечивающих непрерывное навигационное поле на всей поверхности Земли.

Приемоиндикатор системы спутниковой навигации (GPS-навигатор или ) принимает сигналы от спутников, измеряет расстояния до них, и по измеренным дальностям решает задачу определения своих координат – широты, долготы и, при приеме сигналов от 4-х и более спутников – высоты над уровнем моря, скорость, направление (курс), пройденный путь. В состав навигатора входят приемник с для приема сигналов, компьютер для их обработки и навигационных вычислений, дисплей для отображения навигационной и служебной информации и клавиатура для управления работой прибора.

Такие приемники предназначены для постоянной установки в рулевых рубках и на приборных панелях. Их основными особенностями являются: наличие выносной антенны и питание от внешнего источника постоянного тока. Они имеют, как правило, крупные жидкокристаллические монохромные экраны с алфавитно-цифровым и графическим отображением информации.

:

Компактный водонепроницаемый GPS/DGPS/WAAS приемник с высокими характеристиками, спроектированный для малых судов. Этот GPS приемник от компании способен принимать и обрабатывать дополнительные сигналы дифференциальных поправок DGPS/WAAS. Эта возможность обеспечивает, принимая поправки от радиомаяка или геостационарных спутников WAAS, использовать точность выше 5 метров.

Новый (D)GPS навигатор встроенным приемником дифференциальных поправок. Технология прокладки пути позволяет точно создавать маршруты высокой дальности. Есть возможность выбирать локсодромический курс (RL) для коротких дистанций и ортодромический (GC) для длинных.

С технологией прокладки пути позволяет точно создавать маршруты высокой дальности. Есть возможность выбирать локсодромический курс (RL) для коротких дистанций и ортодромический (GC) для длинных.

Стационарные приемники имеют широкие функциональные возможности, особенно профессиональные приборы для использования на море. Они обладают большим объемом памяти, возможностью решения различных навигационных задач, а их интерфейс предоставляет возможность включения в навигационную систему судна.

:

Это современный приемоиндикатор навигационных спутниковых систем ГЛОНАСС/GPS разработанный для судов всех типов.

Разработан специалистами компании «Радио Комплекс» с использованием новейших достижений в области морской навигации. РК-2006 имеет возможность принимать сигналы уже развернутых спутниковых группировок, таких как ГЛОНАСС и GPS, но так же и перспективных европейских и азиатских систем позиционирования, это позволяет с повышенной помехоустойчивостью, и защищенностью от вывода из строя какой-либо системы, определять координаты судна и его курс и скорость.

Приёмник глобальных навигационных спутниковых систем GPS и ГЛОНАСС, от южнокорейского производителя морского радионавигационного оборудования Samyung ENC Co., Ltd - SGN-500.

При использовании ГЛОНАСС и GPS в комбинированных приёмниках (практически все ГЛОНАСС-приёмники являются комбинированными) точность определения координат практически всегда «отличная» вследствие большого количества видимых КА и их хорошего взаимного расположения.

Отображение навигационной информации

В приемниках ГЛОНАСС/ GPS используются два способа отображения информации: алфавитно-цифровой и графический (иногда используется термин «псевдографический»).

Алфавитно-цифровой способ для отображения получаемой информации использует:

  • цифры (координаты, скорость, пройденный путь и т. п.)
  • буквенные сочетания, поясняющие цифровые данные – обычно аббревиатуры фраз (например, МОВ – «Man Over Board» или, по-русски – «Человек за бортом!»
  • сокращения слов (например,SPD – speed – скорость, TRK – Track – трасса), имена путевых точек. Алфавитно-цифровое отображение информации в чистом виде использовалось на начальном этапе развития техники GPS.

Графический способ отображения осуществляется с помощью образуемых на экране рисунков, представляющих характер движения носителя (судна, автомобиля, человека). Графика в аппаратах различных фирм практически одинакова и различается, как правило, в деталях. Наиболее распространенными рисунками являются:

  • электронный компас (не путать с магнитным!)
  • графический указатель движения
  • трасса движения, маршруты
  • символы для путевых точек
  • координаты судна
  • направление на путевую точку
  • скорость

Характеристики:

Точность определения координат места

Точность определения координат места является фундаментальным показателем любой навигационной системы, от значения которого будет зависеть, насколько правильно судно будет следовать по проложенному маршруту и не попадет ли оно на находящиеся поблизости мели или камни.

Точность приборов обычно оценивают по величине среднеквадратической погрешности (СКО) – интервалу, в который попадает 72 % измерений, или по максимальной ошибке, соответствующей 95 %. Большинство фирм-производителей оценивают СКО своих приемников GPS в 25 метров, что соответствует максимальной ошибке 50 метров.

Навигационные характеристики

Навигационные возможности приемников ГЛОНАСС/GPS характеризуют количеством запоминаемых прибором путевых точек, маршрутов и содержащихся в них маршрутных точек. Под путевыми понимаются используемые для навигации характерные точки на поверхности Современные могут создавать и хранить, в зависимости от модели, от 500 до 5000 путевых точек и 20–50 маршрутов с 20–30 точками в каждом.

Помимо путевых точек в любом приемнике есть запас точек для записи и сохранения пройденной трассы. Это количество может достигать от 1000 до нескольких десятков тысяч точек в профессиональных навигаторах. Записанная трасса может быть использована для возврата по ней назад.

Количество одновременно отслеживаемых спутников

Этот показатель характеризует устойчивость работы навигатора и его возможность обеспечения наивысшей точности. Учитывая тот факт, что для определения двух координат позиции – долготы и широты – нужно одновременно отслеживать 3 спутника, а для определения высоты – четырех. Современные ГЛОНАСС/ GPS навигаторы, даже носимые, имеют 8 или 12-канальные приемники, способные одновременно принимать и отслеживать сигналы соответственно до 8 или 12 спутников.

НАВИГАЦИОННЫЕ РАДИОСИГНАЛЫ

Принцип работы системы
навигации

НАВИГАЦИОННОЕ СООБЩЕНИЕ

CИСТЕМЫ КООРДИНАТ

ФАКТОРЫ, ВЛИЯЮЩИЕ НА СНИЖЕНИЕ ТОЧНОСТИ

СИСТЕМЫ ВРЕМЕНИ

ПОВЫШЕНИЕ ТОЧНОСТИ НАВИГАЦИИ

Основные элементы спутниковой системы навигации

Космический сегмент

Космический сегмент, состоящий из навигационных спутников, представляет собой совокупность источников радионавигационных сигналов, передающих одновременно значительный объем служебной информации. Основные функции каждого спутника - формирование и излучение радиосигналов, необходимых для навигационных определений потребителей и контроля бортовых систем спутника.

Наземный сегмент

В состав наземного сегмента входят космодром, командно-измерительный комплекс и центр управления. Космодром обеспечивает вывод спутников на требуемые орбиты при первоначальном развертывании навигационной системы, а также периодическое восполнение спутников по мере их выхода из строя или выработки ресурса. Главными объектами космодрома являются техническая позиция и стартовый комплекс. Техническая позиция обеспечивает прием, хранение и сборку ракет-носителей и спутников, их испытания, заправку и состыковку. В число задач стартового комплекса входят: доставка носителя с навигационным спутником на стартовую площадку, установка на пусковую систему, предполетные испытания, заправка носителя, наведение и пуск.

Командно-измерительный комплекс служит для снабжения навигационных спутников служебной информацией, необходимой для проведения навигационных сеансов, а также для контроля и управления ими как космическими аппаратами.

Центр управления, связанный информационными и управляющими радиолиниями с космодромом и командно-измерительным комплексом, координирует функционирование всех элементов спутниковой навигационной системы.

Пользовательский сегмент

В пользовательский сегмент входит аппаратура потребителей. Она предназначается для приема сигналов от навигационных спутников, измерения навигационных параметров и обработки измерений. Для решения навигационных задач в аппаратуре потребителя предусматривается специализированный встроенный компьютер. Разнообразие существующей аппаратуры потребителей обеспечивает потребности наземных, морских, авиационных и космических (в пределах ближнего космоса) потребителей.

Принцип работы системы навигации

Современная спутниковая навигация основывается на использовании принципа беззапросных дальномерных измерений между навигационными спутниками и потребителем. Это означает, что потребителю передается в составе навигационного сигнала информация о координатах спутников. Одновременно (синхронно) производятся измерения дальностей до навигационных спутников. Способ измерений дальностей основывается на вычислении временных задержек принимаемого сигнала от спутника по сравнению с сигналом, генерируемым аппаратурой потребителя.

На рисунке приведена схема определений местоположения потребителя с координатами x, y, z на основе измерений дальности до четырех навигационных спутников. Цветными яркими линиями показаны окружности, в центре которых расположены спутники. Радиусы окружностей соответствуют истинным дальностям, т.е. истинным расстояниям между спутниками и потребителем. Цветные неяркие линии - это окружности с радиусами, соответствующими измеренным дальностям, которые отличаются от истинных и поэтому называются псевдодальностями. Истинная дальность отличается от псевдодальности на величину, равную произведению скорости света на уход часов b, т.е. величину смещения часов потребителя по отношению к системному времени. На рисунке показан случай, когда уход часов потребителя больше нуля – то есть часы потребителя опережают системное время, поэтому измеренные псевдодальности меньше истинных дальностей.

В идеальном варианте, когда измерения производятся точно и показания часов спутников и потребителя совпадают для определения положения потребителя в пространстве достаточно произвести измерения до трех навигационных спутников.

В действительности показания часов, которые входят в состав навигационной аппаратуры потребителя, отличаются от показаний часов на борту навигационных спутников. Тогда для решения навигационной задачи к неизвестным ранее параметрам (три координаты потребителя) следует добавить еще один - смещение между часами потребителя и системным временем. Отсюда следует, что в общем случае для решения навигационной задачи потребитель должен «видеть», как минимум, четыре навигационных спутника.

Системы координат

Для функционирования навигационных спутниковых систем необходимы данные о параметрах вращения Земли, фундаментальные эфемериды Луны и планет, данные о гравитационном поле Земли, о моделях атмосферы, а также высокоточные данные об используемых системах координат и времени.

Геоцентрические системы координат - системы координат, начало которых совпадает с центром масс Земли. Их также называют общеземными или глобальными.

Для построения и поддержания общеземных систем координат используются четыре основных метода космической геодезии:

  • радиоинтерферометрия со сверхдлинной базой (РСДБ),
  • лазерная локация космических аппаратов (SLR),
  • доплеровские измерительные системы (DORIS),
  • навигационные измерения космических аппаратов ГЛОНАСС и других ГНСС.

Международная земная система координат ITRF является эталоном земной системы координат.

В современных навигационных спутниковых системах используются различные, как правило национальные, системы координат.

Системы времени

В соответствии с решаемыми задачами применяются два типа систем времени: астрономические и атомные.

Системы астрономического времени основаны на суточном вращении Земли. Эталоном для построения шкал астрономического времени служат солнечные или звездные сутки, в зависимости от точки небесной сферы, по которой производится измерение времени.

Всемирное время UT (Universal Time) – это среднее солнечное время на гринвическом меридиане.

Всемирное координированное время UTC синхронизировано с атомным временем и является международным стандартом, на котором базируется гражданское время.

Атомное время (TAI) - время, в основу измерения которого положены электромагнитные колебания, излучаемые атомами или молекулами при переходе из одного энергетического состояния в другое. В 1967 году на Генеральной конференции мер и весов атомная секунда представляет собой переход между сверхтонкими уровнями F=4, M=0 и F=3, M=0 основного состояния 2S1/2 атома цезия-133, не возмущённого внешними полями, и что частоте этого перехода приписывается значение 9 192 631 770 Герц.

Спутниковая радионавигационная система является пространственно-временной системой с зоной действия, охватывающей всё околоземное пространство, и функционирует в собственном системном времени. Важное место в ГНСС отводится проблеме временной синхронизации подсистем. Временная синхронизация важна и для обеспечения заданной последовательности излучения сигналов всех навигационных спутников. Она обусловливает возможность применения пассивных дальномерных (псевдодальномерных) методов измерений. Наземный командно-измерительный комплекс обеспечивает синхронизацию шкал времени всех навигационных КА путем их сверки и коррекции (непосредственной и алгоритмической).


Навигационные радиосигналы

Навигационных радиосигналы

При выборе типов и параметров сигналов, используемых в спутниковых радионавигационных системах, учитывается целый комплекс требований и условий. Сигналы должны обеспечивать высокую точность измерения времени прихода (задержки) сигнала и его доплеровской частоты и высокую вероятность правильного декодирования навигационного сообщения. Также сигналы должны иметь низкий уровень взаимной корреляции для того, чтобы сигналы разных навигационных космических аппаратов надежно различались навигационной аппаратурой потребителей. Кроме того, сигналы ГНСС должны максимально эффективно использовать отведенную полосу частот при малом уровне внеполосного излучения, обладать высокой помехоустойчивостью.

Почти все существующие навигационные спутниковые системы, за исключением индийской системы NAVIC, используют для передачи сигналов диапазон L. Система NAVIC будет излучать сигналы дополнительно и в S диапазоне.

Диапазоны, занимаемые различными навигационными спутниковыми системами

Виды модуляции

По мере развития спутниковых навигационных систем изменялись используемые виды модуляции радиосигналов.
В большинстве навигационных систем изначально использовались исключительно сигналы с бинарной (двухпозиционной) фазовой модуляцией – ФМ-2 (BPSK). В настоящее время в спутниковой навигации начался переход к новому классу модулирующих функций, получивших название BOC (Binary Offset Carrier)-сигналов.

Принципиальное отличие BOC-сигналов от сигналов с ФМ-2 состоит в том, что символ модулирующей ПСП BOC-сигнала представляет собой не прямоугольный видеоимпульс, а отрезок меандрового колебания, включающий в себя некоторое постоянное число периодов k. Поэтому сигналы с BOC-модуляцией часто называют меандровыми шумоподобными сигналами.

Использование сигналов с BOC-модуляцией повышает потенциальную точность измерения и разрешающую способность по задержке. Одновременно с этим, уменьшается уровень взаимных помех при совместном функционировании навигационных систем, использующих традиционные и новые сигналы.

Навигационное сообщение

Каждый спутник принимает с наземных станций управления навигационную информацию, которая передается обратно пользователям в составе навигационного сообщения. Навигационное сообщение содержит разные типы информации, необходимые для того, чтобы определить местоположение пользователя и синхронизовать его шкалу времени с национальным эталоном.

Типы информации навигационного сообщения
  • Эфемеридная информация, необходимая для вычисления координат спутника с достаточной точностью
  • Погрешность расхождения бортовой шкалы времени относительно системной шкалы времени для учета смещения времени космического аппарата при навигационных измерениях
  • Расхождение между шкалой времени навигационной системы и национальной шкалой времени, для решения задачи синхронизации потребителей
  • Признаки пригодности с информацией о состоянии спутника для оперативного исключения спутников с выявленными отказами из навигационного решения
  • Альманах с информацией об орбитах и состоянии всех аппаратов в группировке для долгосрочного грубого прогноза движения спутников и планирования измерений
  • Параметры модели ионосферы, необходимые одночастотным приемникам для компенсации погрешностей навигационных измерений, связанных с задержкой распространения сигналов в ионосфере
  • Параметры вращения Земли для точного пересчета координат потребителя в разных системах координат

Признаки пригодности обновляются в течение нескольких секунд при обнаружении отказа. Параметры эфемерид и времени, как правило, обновляются не чаще, чем раз в полчаса. При этом период обновления для разных систем сильно отличается и может достигать четырех часов, в то время как альманах обновляется не чаще, чем раз в день.

По своему содержанию навигационное сообщение подразделяется на оперативную и неоперативную информацию и передается в виде потока цифровой информации (ЦИ). Изначально во всех навигационных спутниковых системах использовалась структура вида «суперкадр/кадр/строка/слово». При этой структуре поток ЦИ формируется в виде непрерывно повторяющихся суперкадров, суперкадр состоит из нескольких кадров, кадр состоит из нескольких строк.
В соответствии со структурой «суперкадр/кадр/строка/слово» формировались сигналы системы БЕЙДОУ, ГАЛИЛЕО (кроме E6), GPS (LNAV данные, L1), сигналы ГЛОНАСС с частотным разделением. В зависимости от системы, размеры суперкадров, кадров и строк могут отличаться, но принцип формирования остается похожим.

Сейчас в большинстве сигналов используется гибкая строковая структура. В этой структуре навигационное сообщение формируется в виде переменного потока строк различных типов. Каждый тип строки имеет свою уникальную структуру и содержит определённый тип информации (указаны выше). НАП выделяет из потока очередную строку, определяет её тип и в соответствии с типом выделяет информацию, содержащуюся в этой строке.

Гибкая строковая структура навигационного сообщения позволяет значительно более эффективно использовать пропускную способность канала передачи данных. Но главным достоинством навигационного сообщения с гибкой строковой структурой является возможность её эволюционной модернизации при соблюдении принципа обратной совместимости. Для этого в ИКД для разработчиков НАП специально указывается, что если НАП в навигационном сообщении встречает строки неизвестных ей типов, то она должна их игнорировать. Это позволяет добавлять в процессе модернизации ГНСС к ранее существовавшим типам строк строки с новыми типами. НАП, выпущенная ранее, игнорирует строки с новыми типами и, следовательно, не использует те новации, которые вводятся в процессе модернизации ГНСС, но при этом её работоспособность не нарушается.
Сообщения сигналов ГЛОНАСС с кодовым разделением имеют строковую структуру.

Факторы, влияющие на снижение точности

На точность определения потребителем своих координат, скорости движения и времени влияет множество факторов, которые можно разделить на категории:

  1. Системные погрешности, вносимые аппаратурой космического комплекса

    Погрешности, связанные с функционированием бортовой аппаратуры спутника и наземного комплекса управления ГНСС обусловлены в основном несовершенством частотно-временного и эфемеридного обеспечения.

  2. Погрешности, возникающие на трассе распространения сигнала от космического аппарата до потребителя

    Погрешности обусловлены отличием скорости распространения радиосигналов в атмосфере Земли от скорости их распространения в вакууме, а также зависимостью скорости от физических свойств различных слоёв атмосферы.

  3. Погрешности, возникающие в аппаратуре потребителя

    Аппаратурные погрешности подразделяются на систематическую погрешность аппаратурной задержки радиосигнала в АП и флуктуационные погрешности, обусловленные шумами и динамикой потребителя.

Кроме того, на точность навигационно-временного определения существенно влияет взаимное расположение навигационных спутников и потребителя.
Количественной характеристикой погрешности определения местоположения и поправки показаний часов, связанной с особенностями пространственного положения спутника и потребителя, служит так называемый геометрический фактор Γ Σ или коэффициент геометрии. В англоязычной литературе используется обозначение GDOP - Geometrical delusion of precision.
Геометрический фактор Γ Σ показывает, во сколько раз происходит уменьшение точности измерений и зависит от следующих параметров:

  • Г п - геометрический фактор точности определения местоположения потребителя ГНСС в пространстве.
    Соответствует PDOP - Position delusion of precision.
  • Г г - геометрический фактор точности определения местоположения потребителя ГНСС по горизонтали.
    Соответствует HDOP - Horizontal delusion of precision.
  • Г в - геометрический фактор точности определения местоположения потребителя ГНСС по вертикали.
    Соответствует VDOP - Vertical delusion of precision.
  • Г т - геометрический фактор точности определения поправки показаний часов потребителя ГНСС.
    Соответствует TDOP - Time delusion of precision.

Повышение точности навигации

Существующие в настоящее время глобальные навигационные спутниковые системы (ГНСС) GPS и ГЛОНАСС позволяют удовлетворить потребности в навигационном обслуживании обширный круг потребителей. Но существует ряд задач, которые требуют высоких точностей навигации. К этим задачам относятся: взлет, заход на посадку и посадка самолетов, судовождение в прибрежных водах, навигация вертолетов и автомобилей и другие.

Классическим методом повышения точности навигационных определений является использование дифференциального (относительного) режима определений.

Дифференциальный режим предполагает использование одного или более базовых приёмников, размещённых в точках с известными координатами, которые одновременно с приёмником потребителя (подвижным, или мобильным) осуществляют приём сигналов одних и тех же спутников.

Повышение точности навигационных определений достигается за счёт того, что ошибки измерения навигационных параметров потребительского и базовых приёмников являются коррелированными. При формировании разностей измеряемых параметров большая часть таких погрешностей компенсируется.

В основе дифференциального метода лежит знание координат опорной точки – контрольно-корректирующей станции (ККС) или системы опорных станций, относительно которых могут быть вычислены поправки к определению псевдодальностей до навигационных спутников. Если эти поправки учесть в аппаратуре потребителя, то точность расчета, в частности, координат может быть повышена в десятки раз.

Для обеспечения дифференциального режима для большого региона – например, для России, стран Европы, США - передача корректирующих дифференциальных поправок осуществляется при помощи геостационарных спутников. Системы, реализующие такой подход, получили название широкозонные дифференциальные системы.

Введение

На сегодняшний день в мире существует несколько навигационных систем, использующих искусственные спутники Земли, но предлагающими действительно глобальный сервис позиционирования практически в любом месте нашей планеты являются лишь две: российская ГЛОНАСС и американская NAVSTAR. Именно к ним принято относить популярное сокращение GPS.

Общие принципы функционирования СНС

СНС ГЛОНАСС и NAVSTAR создавались исходя из следующих требований: глобальность, помехозащищенность, непрерывность работы, независимость от погодных условий, рельефа, степени подвижности объекта.

Важнейшие из этих требований:

· доступность - степень вероятности работоспособности СНС перед ее применением и в процессе применения;

· целостность - степень вероятности выявления отказа системы в течении заданного промежутка времени;

· непрерывность обслуживания - степень вероятности сохранения непрерывной работоспособности системы на заданном промежутке времени.

Под заданным промежутком времени понимают наиболее важный для потребителя (например, посадка лайнера).

ИКАО - учреждение ООН, устанавливающее международные нормы гражданской авиации - с целью повышения безопасности использования авиации, выдвинуло жесткие требования к основным параметрам СНС (от 0,999 до 0,99999).

Основа концепции NAVSTAR и ГЛОНАСС составили: независимость (определение искомых навигационных данных в аппаратуре потребителя) - это усложняет оборудование потребителя, но не значительно; беззапросность (все вычисления в пользовательской аппаратуре производятся на основе пассивно принятых сигналов от НКА с известными орбитальными координатами). Сочетание независимости и беззапросности придает СНС неограниченную пропускную способность (произвольное число потребителей могут использовать СНС в любое время).

Весь результат СНС достигается путем взаимодействия 3 сегментов: космический, управления и потребителей.

Космический сегмент.

Точность местоопределения зависит от взаимного орбитального расположения спутников и параметров их сигналов. Необходимо, чтобы в зоне видимости потребителя были 3-5 НКА.

На практике орбитальная структура строится так, чтобы их было 6. Есть также резервные спутники.

Основная задача НКА - формирование и излучение сигналов, необходимых для решения навигационных задач. Состав оборудования НКА: радиопередающее оборудования - для передачи навигационного сигнала и телеметрической информации; радиоприемное оборудование - для приема команд от наземных комплексов управления; антенны; бортовой эталон времени; солнечные и аккумуляторные батареи и т.д.

НКА сигналы имеют 2 составляющие: дальномерную (для определения навигационных параметров - дальность до НКА, вектора скорости потребителя, его пространственная ориентация); служебную (содержит информацию о координатах спутника).и ГЛОНАСС часто называют сетевыми, так как важное значение имеет синхронизация НКА и объединение их в сеть.

Существует в СНС такое понятие, как джаминг (подавление сигнала вражеской СНС, вызывая помехи), спуфинг (подмена сигнала) и антиспуфинг (защитная реакция СНС на спуфинг).

Сегмент управления

Этот сегмент состоит из главной станции, совмещенной с вычислительным центром; группы контрольно-измерительных станций (КИС); наземного эталона времени и частоты.

КИС (размещаемые по возможности максимально равномерно) наблюдают за спутниками, принимают навигационные сигналы, осуществляют первичную обработку информации и производят обмен данными с главной станцией. После этого на главной станции математически обрабатывают сигнал и вычисляют корректировки.

Наземный эталон более точный, поэтому с ним синхронизируют все остальные.

Сегмент потребителей

Всех потребителей можно условно разбить на три вида: военные, частные и гражданские.

Состоит он из:

· радиочастотный тракт - в нем происходит прием радиосигналов НКА, их первичная обработка;

· вычислитель - для вторичной обработки (выделение навигационной информации, реализация алгоритма выбора оптимального созвездия и вычисления пространственных координат и вектора скорости потребителя).

Определение координат НКА

При существующем подходе к построению СНС максимально возможный объем вычислений стараются перенести на наземный комплекс управления. КИС расположены на ограниченных территориях и не обеспечивают непрерывное наблюдение за НКА. Результаты доступных наблюдений подвергаются математической обработке и на основании этих данных составляется прогноз параметров орбиты (эфемериды) вплоть до следующего прогноза.

Эфемериды - спрогнозированные, путем алгебраических вычислений, параметры орбиты и их производные.

Альманах - набор сведений о текущем состоянии СНС вцелом.

Прецессии - движение по конусу.

Нутации - небольшие колебания.

Геоцентрическая инерционная система координат

Система координат, состоящая из трех осей (X, Y, Z) и точкой начала координат О, находящейся в центре тяжести Земли. Ось Х направлена от точки О в точку Овна (весеннего равноденствия) и проходит в плоскости экватора; Y - дополняет Х до правой в плоскости экватора; Z - совпадает с осью вращения Земли и проходит через полюсы.

Геоцентрическая подвижная система

Аналогичная инерционной системе, разница лишь в оси Х, проходящей через нулевой меридиан (Гринвичский).

Геодезическая система

Определяет координаты точки относительно земной поверхности. Широта - угол между отвесной линией, проходящей через точку, и плоскость экватора.

Долгота - угол между плоскостью начального меридиана и плоскостью меридиана, проходящего через точку.

Невозмущенное (кеплеровое движение) - движение, на которое влияет только сила тяжести Земли и центр тяжести тела находится в центре тяжести Земли.

Возмущающие факторы

· притяжение Луны и Солнца;

· давление светового излучения Солнца;

· неравномерность гравитационного поля Земли;

· сопротивление среды при движении спутника.

Анализируя эти факторы, можно сделать выводы:

экваториальные орбиты имеют наиболее стабильную форму, но нестабильное положение орбитальной плоскости и орбиты в этой плоскости;

полярные орбиты имеют стабильную орбитальную плоскость, но сравнительно большие изменения формы орбиты;

наклонные орбиты i≈60° имеют компромиссную стабильность параметров.

ГЛОНАСС и NAVSTAR применяют средневысотные наклонные орбиты (i≈60°).

Угол i - называется угол между экваториальной и орбитальной плоскостями. i≈90° - приполярная орбита; i=90° - полярная; i=0° - экваториальная.

Не маловажным фактором является также угловая скорость (векторная величина, характеризующая скорость вращения тела). У круговых орбит она более стабильная, поэтому они используются ГЛОНАСС и NAVSTAR.

Характеристики спутников

Зона обзора.

Это участок земной поверхности, на котором можно принимать сигналы НКА и осуществлять за ним наблюдение. Центром этой зоны является географическое место спутника (в месте пересечения земной поверхности и линией, соединяющей центры тяжести Земли и НКА).

Совокупность таких мест называется трассой спутника.

Радиогоризонт - условная линия, меньше истинного горизонта на 5-10° - величину маски.

Зона видимости.

Область небосвода, в которой НКА наблюдается с момента восхода над горизонтом, до момента его захода за горизонт.

Продолжительность наблюдения.

Промежуток времени, во время которого потребитель наблюдает НКА. Максимален, если потребитель находится в трассе НКА. Зависит от высоты полета и от периода обращения.

спутниковый навигационный орбитальный космический

Навигационные задачи и методы их решения

Совокупность точек с одинаковой дальностью до НКА (R) формируют поверхность положения, центр которой совпадает с фазовым центром передающей антенны.

При получении 2-ух поверхностей положения, получаем линию положения - совокупность точек, имеющих 2 заданных значения навигационного параметра R.

Навигационный параметр - геометрический параметр, совпадающий с радионавигационным.

Пересечение 2-ух сфер дает линию положения в виде окружности, из-за чего возникает неоднозначность местоположения, так как получаем две линии положения, пересекающихся в двух местах. Устраняется это введением еще одной линии положения, или дополнительной информации о местоположении.

Дальномерный метод

Ri - дальность между потребителем и НКА; Xi, Yi, Zi - координаты НКА; X,Y,Z - координаты потребителя.

Возникает неоднозначность, так как координаты потребителя находятся в точке пересечения трех поверхностей положения. Устраняется неоднозначность знанием ориентировочных координат потребителя, а если такой возможности нет - используют дальность до третьего НКА.

Для наземного потребителя линия положения - окружность на поверхности Земли. Однако часто высота потребителя неизвестна, и поскольку Землю нельзя принять а поверхность положения (не идеальная форма) - надо использовать минимум не 3, а 4 НКА.

Если еще учесть, что часто некоторые НКА находятся близко к радиогоризонту (что чрезвычайно невыгодно с точки зрения приема радиосигнала), остается очевидной необходимость использовать 5-6 НКА, что и обусловливает орбитальную структуру СНС. В этом способе пренебрегают Δt - расхождение в шкалах времени (из-за несинхронизации и взятия исходных данных не в один момент времени).

Псевдодальномерный метод

Δt - величина постоянная. Поэтому при измерении дальности до i-ого НКА получают псевдодальность R’i=Ri + ΔR (ΔR=c* Δt).

В этом уравнении 4 неизвестных (X,Y,Z, ΔR). Поэтому также нужны априорные знания координат потребителя, в противном случае, необходимо использовать не 4, а минимум 5 НКА, что тяжело сделать на практике.

Жесткие требования этого способа реализуются только среднеорби-тальными СНС. Положительным качеством этого метода является то, что найдя постоянную погрешность ΔR=с* Δt, потребитель находит Δt, что дает ему возможность синхронизировать свою аппаратуру с эталоном временем НКА.

Определение пространственной ориентации потребителя

Одной из важных задач является определение пространственной ориентации потребителя. Один из способов решения этой задачи:

В 2-ух точках А и В потребителя устанавливаем приемники СНС. Приемники синхронно измеряют 2 дальности до i-ого спутника с известными координатами. Учитываем разность фаз сигналов, принимаемых А и В. Решается система из 3-ех уравнений, которые получаем в результате измерения минимум 3-ех дальностей.

Радиосигналы

Навигационные параметры СНС определяют через соответствующие параметры радиосигнала. Основными навигационными параметрами радиосигналов является:

· дальность (определяется через задержку сигнала);

· радиальная скорость (через доплеровское смещение).

В NAVSTAR используют кодовое разделение каналов, а в ГЛОНАСС частотное.

Потребитель часто принимает сигналы с разных спутников одновре-менно, поэтому необходим приемник с коррелятором (своего рода фильтр, вычисляющий значение корреляционной функции между принимаемым и опорным сигналом).

Шумоподобные сигналы (ШПС)

ШПС - используются для достижения высокоточности измерения параметров навигационного сигнала. ШПС имеют высокую помехоус-тойчивость, из-за того, что ширина спектра больше ширины спектра помех. ШПС имеют большую базу и позволяют иметь высокую разрешающую способность.

База сигнала - это произведение эффективной длительности сигнала на его эффективную ширину спектра.

В современных СНС используют фазоманипулированные ШПС (после-довательность радиоимпульсов, начальные фазы которых имеют дискретные значения, чередующиеся по определенному закону.

Факторы, влияющие на точность определения вектора потребителя

Источники возникновения дальномерной погрешности можно разделить на 3 группы:

Вносимые контрольно-измерительным комплексом и оборудова-нием навигационного спутника.

2. Возникающие на трассе распространения сигнала.

Вносимые приемоиндикатором потребителя(зависят от качества оборудования потребителя).

Погрешности первой группы обусловлены неидеальностью частотно-временного и эфемеридного обеспечения НКА. Они зависят от качества бортового и КИС-ого оборудования, от стабильности эталона частоты и времени. На сегодняшний день при помощи КИС ведется постоянное наблюдение за эталонами каждого НКА и коррекция рассчитывается индивидуально.

Также существует групповая задержка навигационного сигнала в аппаратуре спутника - это интервал времени между выходным навигационным сигналом в центре передающей антенны и выходным сигна-лом бортового эталона частоты и времени. (Измеряется при сборке и калибровке аппаратуры).

Для средневысотных СНС имеют также значение релятивистские и гра-витационные погрешности, обусловленные различиями скоростей НКА и потребителя а также различиями гравитационного потенциала в точках расположения НКА и потребителя.

Погрешности второй группы наименее предсказуемы.

Рефракция радиоволн - это искривление пути распространения радио-волн. Обусловлена неоднородностями и изменениями диэлектрической погрешности с высотой. Зависит от давления влажности, температуры.

Малые углы невыгодны для распространения радиоволн, так как рефракция достигает максимального значения. Поэтому учитывают угол маски (5-10°) при определении радиогоризонта.

Ночью рефракцией пренебрегают. В NAVSTAR существуют наблюдения за количеством свободных электронов в ионосфере. В ГЛОНАСС это отсутствует.

Негативно на определение вектора потребителя влияет многолучевой прием. Особенно ощущается авиационным потребителем, из-за большой высоты от отражающих объектов.

ГЛОНАСС

Состоит из 24-ех спутников в 3-ех орбитальных плоскостях. Орбитальные плоскости разнесены относительно друг друга на 120°. В каж-дой орбитальной плоскости по 8 спутников, со сдвигом по аргументу широты 45°. Орбиты спутников являются очень близкими к круговым, высота 18840-19440 км (номинальная - 19100 км). Наклонение орбит - i=64.8°. Орби-тальная структура построена так, что с любой точки наблюдается минимум 4 спутника.

Непрерывность навигационного поля обеспечивается на высоте 2000 км. Система сохраняет полную функциональность при выходе из строя 6 НКА (если по 2 в каждой плоскости)

Интервал повторяемости трасс движения НКА и, соответственно, зон радиовидимости наземными потребителями составляет 17 витков или 7 суток 23 часа 27 минут. Отсюда следует, что СНС ГЛОНАСС - не резонансная (синхронная), т.е. спутники в своем орбитальном движении не имеют резонанса (синхронизма) с вращением Земли. Благодаря этому возмущающее влияние гравитационного поля меньше воздействует на работу системы, из-за чего орбитальная группировка ГЛОНАСС более стабильна, чем NAVSTAR. Не нужны дополнительные корректировки к орбитальной группировке ГЛОНАСС.

Из-за ограниченного количества топлива в НКА, переход на другую орбиту осуществляется крайне редко, при необходимости.

Выведение НКА на орбиту осуществляется по схеме, по 3 спутника одновременно (3 этапа): выведение на промежуточную круговую орбиту высотой около 200 км; переход на эллиптическую орбиту с перигеем 200 км и апогеем 19100 км и наклонением 64,3°; переход на круговую орбиту 19100 км. По времени этот процесс занимает от недели до месяца.

Все системы и специальное оборудование НКА помещены в герметичный контейнер диаметром 1,35м. На поверхность контейнера, обращенную к Земле, установлены антенно-фидерная система и панель уголковых отражателей.

С противоположной стороны топливные баки. НКА снабжены солнечными батареями, шириной 7,23 м. Вес аппарата 1487кг. Время активного существования до 5 лет и ведутся работы по улучшению - до 12-15 лет. Состав оборудования:

Бортовой хронизатор - для формирования высокостабильных частот и бортовой шкалы времени (цезиевый атомный стандарт) 207кг.

2. Бортовой навигационный передатчик состоящий из: аппаратуры формирования навигационных сигналов и антенно-фидерного обору-дования. Для повышения надежности дублируют некоторые блоки. Переключение на резервные блоки осуществляется автоматически или с Земли.

Антенно-фидерная система конструктивно представляет собой фазированную решетку, из 2-ух групп спиральных излучателей (4центральных и 1 периферийный кольцевой). Конструкция позволяет одновременно работать на частотах L1и L2.

Система координат используется геоцентрическая инерционная ПЗ-90.

Сегмент управления

Состоит из:

· Центр управления системой.

· Центральный синхронизатор.

· Системы контроля фаз.

· Аппаратура контроля поля.

Функции наземного сегмента:

· траекторные измерения для уточнения орбит спутников;

· временные измерения для определения расхождения бортовых времени относительно системной шкалы;

· синхронизация бортовых шкал;

· формирование и выгрузку на спутники служебную информацию (альманах, эфемериды, поправки);

· контроль за работой бортовых систем НКА.

Сеть станций ГЛОНАСС выгодно отличается от NAVSTAR тем, что станции расположены на территории своей страны.

Измерение траекторных изменений осуществляется запросным способом (по доплеровскому сдвигу).

Сегмент потребителя

После приема и обработки навигационных сигналов аппаратура потребителя измеряет и вычисляет навигационные параметры: псевдо-дальность и псевдоскорость; вычисляет геоцентрические координаты, пере-водит их в геодезические, вычисляет вектор скорости и высоту; находит поправку к местной шкале времени относительно системного времени.

Интерфейс

Интерфейс - это перечень требований, описаний и технических стан-дартов сигналов, путем которых происходит передача информации от косми-ческого сегмента к потребителю. (2 несущие частоты L1-1600МГц, L2-1250МГц)

Интерфейс системы ГЛОНАСС беззапросный, что значит, что на частотах L1 и L2 сигналы излучаются непрерывно, и любой потребитель в произвольный момент времени получает информацию, находясь в пассивном режиме.

Используется частотное разделение каналов. Не возникает неоднозначности, так как потребитель не может принимать сигналы одновременно двух антиподных спутников.

Время ГЛОНАСС

Основывается на водородном стандарте частоты, суточная нестабиль-ность которого 5*10 -14 с. UTC отличается от времени ГЛОНАСС на целое число часов (на +3 часа 00мин 00сек).


В связи с тем, что ГЛОНАСС применяется в таких чрезвычайно критичных к достоверности навигационной информации приложениях, как авиация, боевые действия войск, морская навигация и т.д., контролю целостности радионавигационного поля придается большое значение. Заклю-передаваемой им навигационной информации.

Самоконтроль на борту НКА

На спутниках ГЛОНАСС предусмотрен автономный непрерывный контроль функционирования основных бортовых систем.

Контроль наземными средствами

Существует 2 типа признаков состояния: Bn - НКА пригоден; Cn - не пригоден. Bn получается потребителем раньше, чем Cn. Но потребитель может пользоваться его информацией под свою ответственность (в NAVSTAR). В ГЛОНАСС - условная пригодность. Она зависит от того, какое оборудование на борту НКА вышло из строя.- автономный контроль целостности в приемнике потребителя. Суть способа в том, что для определения вектора потребителя (вектор скорости, широта, долгота, высота и время) достаточно 4 НКА. Если есть 5-ый НКА в зоне видимости, можно провести 5 сеансов, исключая по очереди 1 из спутников и определить неисправный спутник.

Полное созвездие NAVSTAR состоит из 24 действующих и не менее 3 резервных НКА. Действующие НКА движутся по 6 круговым орбитам, которые наклонены на 50° к плоскости экватора и на 60° между собой. Высота движения НКА=20180км. Период обращения 11ч 58мин.

НКА распределены так по орбитам, что в любой точке земной поверх-ности наблюдается 5 НКА (Исключения - полярные и приполярные области). Применяется несколько типов НКА. В середине 80-ых годов запущены первые несколько НКА серии «Block-1». С 1989г выводились на орбиту спутники серии «Block-2». В 1994 все НКА серии «Block-1» прекратили работу и уже находились в работе 24 «Block-2». Потом была серия «Block-2R» с 1996г и новая серия (к 2006г) «Block-2F».

Размеры НКА - 1,5м ширина, и длина - 5,3м. Состав оборудования: стандарты частоты, передатчики, синтезатор частоты, блок формирования навигационных сигналов, 1 основная и 2 резервные бортовые ЭВМ, системы ориентации и коррекции орбиты, телеметрии, приема и ретрансляции сигналов наземного комплекса управления, система терморегулирования (теплоотводящие панели и нагревательные элементы) и электропитания (солнечные батареи, а в тени - аккумуляторы).

Для передачи навигационных сигналов применяются фазированные антенные решетки на основе спиральных излучающих элементов. В линии обмена данных между НКА и наземным комплексом управления используют спирально-конические и конические антенны.

Бортовая подсистема телеметрии осуществляет передачу по радиоканалу данных о состоянии бортовой аппаратуры в наземный сегмент управления. По этому же каналу с Земли передаются поправки. С помощью специального сигнала, отправляемого НКА и ретранслируемого обратно, определяют орбиту спутника.

Канал «Земля-борт» исп. Частоту 2227,5 МГц; «Борт-Земля» - 1783,74 МГц. Спутники «Block-2F» находятся в автономном режиме более 60 дней.

Сегмент управления

Сегмент управления отслеживает движение НКА, устраняет нако-пившиеся ошибки и выполняет корректировку орбит. Зная координаты наземных станций, имея эталон времени, можно измерить псевдодальность до НКА и рассчитать точное положение спутника на орбите.

Также принимают в главной станции астро-физическую и метеороло-гическую информацию, с целью определить эфемериды, учитывая поправки, возникающие из-за погодных изменений, вспышек на Солнце и т.д.

Наземные станции также принимают информацию о состоянии бортового оборудования. В случае обнаружения сбоев принимаются решения относительно работоспособности НКА.

Сегмент потребителей

Аналогично ГЛОНАСС состоит из: приемников и некоторых дополнительных устройств (антенны, интерфейс с исполнительными устройствами, вспомогательное программное обеспечение).

Область применения СНС NAVSTAR:

· военные задачи (целенаведение и указание);

· авиация (прокладка курса, автопосадка);

· морской транспорт (позиционирование, прокладка курса);

· наземный транспорт (контроль движения);

· геодезия и картография (картографирование);

· строительство (мосты, туннели);

· сельское хозяйство (разметка сель-хоз угодий);

· спасательные работы;

· частное использование в быту (охота, туризм).

Интерфейс системы

Подразумевает под собой перечень требований, описаний и технические стандарты сигналов, передаваемых от космического сегменту к потребителю. Используют 2 частоты для передачи навигационных сигналов с НКА: L1 1575,42 МГц; и L2 1227,6 МГц. Используется кодовое разделение сигналов (Все НКА работают на двух частотах, но каждый канал имеет свой код).

Интерфейс системы NAVSTAR так же как и ГЛОНАСС беззапросный.

псевдослучайных дальномерных кода:

· P-код - основной дальномерный код. Индивидуальный для каждого НКА (скорость передачи информации 10,23 Мбит/с)

· Y-код - вместо Р-кода, при включении режима предотвращения преднамеренных помех

· C/A - открытый код. Сначала использовались лицензированными пользователями.

Групповая задержка не превышает 15 нс.

Время GPS отличается от UTC на целое число секунд, так как UTC постоянно корректируют, а шкала времени GPS должна быть относительно непрерывной. В аппаратуре потребителя есть приспособление для перевода

времени GPS на UTC с точностью 90нс.

Проект Галилео

Галилео (Galileo) -совместный проект спутниковой системы навига-ции Европейского союза и Европейского космического агентства, является частью транспортного проекта «Трансъевропейские сети ». Ныне существующие GPS-приемники не смогут принимать и обрабатывать сигналы со спутников Галилео (кроме приемников компаний Altus Positioning Systems, Septentrio, JAVAD GNSS и российских приемников ФАЗА+), хотя достигнута договоренность о совместимости и взаимодополнению с системой NAVSTAR GPS. Помимо стран Европейского союза в проекте участвуют: Китай, Израиль, Южная Корея, Украина и Россия. Ожидается, что «Галилео» войдет в строй в 2014-2016 годах, когда на орбиту будут выведены все 30 запланированных спутников (27 операционных и 3 резервных).

Космический сегмент будет обслуживаться наземной инфраструктурой, включающей в себя три центра управления и глобальную сеть передающих и принимающих станций.

В отличие от американской GPS и российской ГЛОНАСС, система Галилео не контролируется национальными военными ведомствами, однако, в 2008 году парламент ЕС принял резолюцию «Значение космоса для безопасности Европы», согласно которой допускается использование спутниковых сигналов для военных операций, проводимых в рамках европейской политики безопасности. Спутники «Галилео» будут выводиться на орбиты высотой 23 222 км, проходя один виток за 14 ч 4 мин и 42 с и обращаясь в трех плоскостях, наклоненных под углом 56° к экватору, что обеспечит одновременную видимость из любой точки земного шара по крайней мере четырёх аппаратов. Временная погрешность атомных часов, установленных на спутниках, составляет одну миллиардную долю секунды, что обеспечит точность определения места приёмника около 30 см на низких широтах. За счет более высокой, чем у спутников GPS орбиты, на широте Полярного круга будет обеспечена точность до одного метра.

Каждый аппарат «Галилео» весит около 700 кг, его габариты со сложенными солнечными батареями составляют 3,02×1,58×1,59 м, а с развёрнутыми - 2,74×14,5×1,59 м, энергообеспечение равно 1420 Вт на солнце и 1355 Вт в тени. Расчетный срок эксплуатации спутника превышает 12 лет.

Первый этап

Первая фаза - планирование и определения задач.

Первый опытный спутник системы Галилео был выведен на расчётную орбиту высотой 23 222 км с наклонением 56° 28 декабря 2005 года (GIOVE-A). Основная задача GIOVE-A состояла в испытании дальномерных сигналов Галилео на всех частотных диапазонах.

Второй этап

Второй опытный спутник системы Галилео GIOVE-B был запущен 27 апреля 2008 года и начал передавать сигналы 7 мая 2008 года. Основная задача GIOVE-B состоит в тестировании передающей аппаратуры, которая максимально приближена к будущим серийным спутникам. GIOVE-B - первый спутник, в котором в качестве часов используется водородный мазер.

Оба спутника GIOVE предназначены для проведения испытаний аппаратуры и исследования характеристик сигналов.

Третий этап

Третий этап состоит в выводе на орбиты четырех спутников Galileo IOV, которые, будучи запущенными парами (два 20 октября 2011 года и ещё два в октябре 2012 года), создадут первое мини-созвездие Galileo. Запуски состоятся с помощью ракеты «Союз-СТБ». Спутники будут расположены на круговых орбитах на высоте 23 222 км.

декабря 2011 года Galileo передала на Землю первый тестовый навигационный сигнал - два спутника успешно включили свои передатчики. Специалисты Galileo включили главную антенну L-диапазона (1,2-1,6 гГц), с которой был передан первый для Galileo навигационный сигнал. В 12 октября 2012 года, были запущены на орбиту еще 2 спутника проекта Galileo, стало возможным первое позиционирование из космоса, так как для него необходимо по крайней мере четыре спутника.

Создание наземного сегмента: трех центров управления, пяти станций конт-роля за спутниковой группировкой, 30 контрольных приемных станций,

Центры управления будут расположены в Фучино (Италия) и Оберпфаффенхофене (Германия). Способность системы Галилео напрямую информировать пользователей о уровне целостонсти сигнала представляет основное существенное отличие от других систем спутниковой навигации.

Первые виды услуг должны быть представлены в 2014 году, все виды служб - не раньше 2016 года.

Всемирная сеть станций Galileo будет контролироваться Центром управления, находящимся в Фучино (Италия). Поправки в сигнал определения координат спутниками будут вноситься через каждые 100 минут или даже меньше.

Четвёртый этап

Четвёртый этап проекта будет запущен предположительно с 2014 года.

К 2015 году на орбиту будут выведены ещё 14 спутников, остальные - к 2020 году.

После завершения развертывания группировки, спутники обеспечат в любой точке планеты, включая Северный и Южный полюса, 90%-ю вероятность одновременного приема сигнала от четырёх спутников. В большинстве мест на планете одновременно в зоне прямой видимости будут находиться шесть спутников Galileo, что позволит определить местоположение с точностью до одного метра. Для максимальной синхронизации спутники Galileo оснащены сверхточными атомными часами на рубидии-87 с максимальной ошибкой до одной секунды за три миллиона лет.

В продолжение темы:
Интернет

Как создать пассивный доход – 14 работающих способов + 12 советов начинающим бизнесменам. Чтобы ответить на вопрос: как создать пассивный доход , нужно понять, как действуют...